Spatial Resolution of TEM Measured by Young’s Fringe
- Practical Electron Microscopy and Database -
- An Online Book -

https://www.globalsino.com/EM/  



 

This book (Practical Electron Microscopy and Database) is a reference for TEM and SEM students, operators, engineers, technicians, managers, and researchers. You can click How to Cite This Book to cite this book. Please let Dr. Liao know once you have cited this book so that the brief information of your publication can appear on the “Times Cited” page. This appearance can also help advertise your publication.

 

=================================================================================

The extent of information transfer and the spatial resolution can be calculated by frequency space obtained from Young’s fringes produced by an image shift during imaging exposure. Figure 4149 shows the Fourier transforms of HRTEM (high-resolution TEM) images of gold (Au) nanoparticles on an amorphous carbon film. A monochromator was installed in the TEM system. When the monochromator was turned off, the Young’s fringes extended only to about 70 pm. When the monochromator was turned on and thus the effect of chromatic aberration was reduced, the Young’s fringes extended beyond 50 pm (red circle) in all directions, reflecting that this microscope with the monochromator has 50 pm spatial resolution.

Young’s Fringes Produced by TEM Image Shift

Figure 4149. HRTEM performance demonstrated by Young’s fringe experiments with gold nanoparticles on a carbon film: (a) With monochromator turned off, the Young’s fringes extended to about 70 pm; (b) With monochromator turned on, the Young’s fringes extended beyond 50 pm. The inset line traces are obtained from the areas outlined in green and red boxes [1].

 

 

[1] C. Kisielowski, B. Freitag, M. Bischoff, H. van Lin, S. Lazar, G. Knippels, P. Tiemeijer, M. van der Stam, S. von Harrach, M. Stekelenburg, M. Haider, S. Uhlemann, H. Müller, P. Hartel, B. Kabius, D. Miller, I. Petrov, E. A. Olson, T. Donchev, E.A. Kenik, A. R. Lupini, J. Bentley, S.J. Pennycook, I. M. Anderson, A.M. Minor, A.K. Schmid, T. Duden, V. Radmilovic, Q. M. Ramasse, M. Watanabe, R. Erni, E.A. Stach, P. Denes, and U. Dahmen, Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Å Information Limit, Microsc. Microanal. 14, 469–477, 2008.

 

=================================================================================

The book author (Dr. Liao) welcomes your comments, suggestions, and corrections, please click here for submission.



 
 
 
Copyright (C) 2006 GlobalSino, All Rights Reserved