Many advanced applications of FIB have been based on alloy liquid metal ion sources (alloy-LMISs). The basic advantages of the alloys in such LMISs include:
i) Low melting temperature.
ii) High wetting characteristics of the surface of the needle.
iii) High resistance to oxidation.
Table 2449 lists the materials for alloy liquid metal ion sources (LMISs).
Table 2449. Materials for alloy liquid metal ion sources.
Alloy |
Melting Temperature (°C) |
Applications |
Reference |
Au78.2Dy8Si13.8 |
294 |
Dy: magnetic moment |
[2] |
Au73Ge27 |
365 |
Au: Sputtering, nano-cluster; Ge: Doping, forming SixGe1-x microstructures |
|
Au77Ge14Si9 |
365 |
Si: contamination free processing; low damage imaging |
|
Co36Nd64 |
566 |
Co: CoSi2, Nd: optical and magnetic devices |
|
Co27Ge73 |
817 |
Co: magnetic application |
|
Er69Ni31 |
765 |
Er: optical application (optoelectronic integrated circuits - OEICs) |
[1] |
Er70Fe22Ni5Cr3 |
862 |
Fe,Ni,Cr: magnetic application |
[4] |
Sn74Pb26 |
183 |
Sn: doping |
|
Mn45Ge54Si1 |
720 |
Mn: implantation in compound semiconductors |
|
Ga38Bi62 |
222 |
Ga: acceptor; Bi: shallow donor |
|
Ga35Bi60Li5 |
250 |
Li: source for analysis and ion beam lithography; low damage imaging |
[3] |
AlCeC |
660 |
C implanation into III/V materials |
|
[1] L. C. Chao and A. J. Steckl, Development of an Er–Ni liquid alloy ion source, J. Vac. Sci. Technol. B 173
, (1999) 1056.
[2] A. Melnikov, T. Gerya, M. Hillmann, I. Kamphausen, W. Oswald,
P. Stauche, R. Wernhardt, and A.D. Wieck, Development of an Au–Dy–Si liquid alloy ion source
for focussed ion beam implantation, Nuclear Instruments and Methods in Physics Research B 195 (2002) 422–425.
[3] L. Bischoff and Ch. Akhmadaliev, An alloy liquid metal ion source for lithium, J. Phys. D: Appl. Phys. 41(5) (2008) 052001.
[4] L. Bischoff and J. Teichert, Liquid metal ion source working with an Er70Fe22Ni5Cr3 alloy, (2000) J. Phys. D: Appl. Phys. 33 L69.
|