Chapter/Index: Introduction | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Appendix
In both electron- and ion-beam deposition methods, the gaseous precursor molecules containing target elements are introduced near the surface of a substrate. The molecules are adsorbed on the surface, and then are decomposed by an energetic electron- or ion-beam in a vacuum chamber. The volatile products of the precursor are pumped out while the nonvolatile product containing the target elements remains as a deposit.
This process is usually performed in scanning electron microscopes (SEMs) and scanning transmission electron microscopes (STEMs) in high spatial accuracy. In practice, the energies of the primary electrons are normally too high (in the range of 10 to 300 keV) to efficiently break the molecular bonds of the precursors. Therefore, the decomposition normally occurs through a two-step process: The EBID may be divided into two categories:
[1] Song M, Mitsuishi K, Tanaka M, Takeguchi M, Shimojo M
and Furuya K 2005 Appl. Phys. A 80 1431.
|