Modeling of ELNES
- Practical Electron Microscopy and Database -
- An Online Book -  

This book (Practical Electron Microscopy and Database) is a reference for TEM and SEM students, operators, engineers, technicians, managers, and researchers.


Band structure (BS) methods used in EELS modeling are applied in reciprocal space based on density functional theory (DFT) [1 - 2]. BS methods were originally developed to derive the electron density. The advantage of BS methods is that based on ELNES and low loss spectra, many physical properties can be derived from the same calculation. Those properties can be band structure diagrams, density of states, elastic constants, optical properties, electron densities, etc. The drawback of BS methods is that they yield only ground states properties, and thus the calculation of excited states properties is not guaranteed to work. However, the calculation of ELNES and of low loss spectra with DFT works very well [3].

Among the various codes available for DFT calculations, two codes are commercially available and can be used to model ELNES: i) Pseudopotential code CASTEP, which was developed in University of Cambridge [4 - 5] ( and ii) WIEN2k which was developed at the Vienna University of Technology [6 - 7] (









[1] Hohenberg, P., Kohn, W., 1964. Inhomogeneous electron gas. Phys. Rev. 136 (3B), B864–B871.
[2] Kohn, W., Sham, L.J., 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (4A), A1133–A1138.
[3] Rez, P., Bruley, J., Brohan, P., Payne, M., Garvie, L.A.J., 1995. Review of methods for calculating near edge structure. Ultramicroscopy 59, 159–167.
[4] Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D., 1992. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64 (4), 1045 - 1097.
[5] Pickard, C.J., Payne, M.C., 1997. Ab initio EELS: beyond the fingerprint. In: Electron Microscopy and Analysis Group Conference EMAG97. IOP Publishing Ltd, pp. 179–182.
[6] Blaha, P., Schwarz, K., Sorantin, P., 1990. Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415.
[7] Hébert-Souche, C., Louf, P.-H., Blaha, P., Nelhiebel, M., Luitz, J., Schattschneider, P., Schwarz, K., Jouffrey, B., 2000. The orientation dependent simulation of ELNES. Ultramicroscopy 83 (1–2), 9–16.




The book author (Dr. Liao) welcomes your comments, suggestions, and corrections, please click here for submission. You can click How to Cite This Book to cite this book. If you let Dr. Liao know once you have cited this book, the brief information of your publication will appear on the “Times Cited” page.

Copyright (C) 2006 GlobalSino, All Rights Reserved