Precursor Gases used in Ion-beam/FIB/Electron-beam Induced Depositions
- Practical Electron Microscopy and Database -
- An Online Book -




Table 4523. Precursor gases used to deposit materials in FIB.

Deposited materials
Precursor gases
Beam ions
Al Trimethyl aluminum (TMA) Al2(CH3)3   [2]
Trimethylamine alane (TMAA)   [3]
Triethylamine alane (TEAA)   [3]
Tri-isobutyl aluminum (TIBA), Al(C4H9)3   [4]

Dimethyl gold hexafluoro acetylacetonate C7H7O2F6Au

  [5, 6]
Naphthalene {C10H8}, or C14H10
Naphthalene (C10H8)   [7]
Cu Cu(hfac)TMVS   [8]
Iron pentacarbonyl {Fe(CO)5}
Si(OCH3)4   [9]
Tetraethyl Orthosilicate {Si(OC2H5)4}, or C4H16Si4O4

A combination of siloxane and oxygen gases

Pd Palladium acetate [Pd(O2CCH3)2]3   [11]

(methylcyclopentadienyl) trimethyl platinum C9H16Pt

  [12, 13]
Methyl cyclopentadienyl trimethyl platinum {(CH3)3Pt(CpCH3)}, C5H5Pt(CH3)3, or (CH3C5H4)(CH3)3Pt
Tungsten hexacarbonyl {W(CO)6}
Tungsten hexafluoride WF6   [14]
Tungsten hexafluoride, WF6   [15]
Insulator (TEOS) (C2H5)4Si   [16]
Ta Pentaetoxy tantalum, Ta(OC2H5)5   [14]
PMTA, Ta(OC2H5)5   [14]

The materials deposited in FIB normally contain impurities. For instance, FIB-deposited tungsten material can consist of approximately 80% W, 5% O, 5% C, and 10% Ga if W(CO)6 precursor and Ga beam are used.









[1] Kazuo Furuya, Nanofabrication by advanced electron microscopy using intense and focused beam, Sci. Technol. Adv. Mater. 9 (2008) 014110.
[2] K. Gamo, N. Takakura, N. Samoto, R. Shimizu and S. Namba. Jpn. J. Appl. Phys., 23 (1984), L293–5. 
[3] M. E. Gross, L. R. Harriott and R. L. Opila, Jr. J. Appl. Phys., 68 (1990), 4820–4. 
[4] R. L. Kubena, F. P. Stratton and T. M. Mayer. J. Vac. Sci. Technol. B, 6 (1988), 1865–8. 
[5] G. M. Shedd, A. D. Dubner, C. V. Thompson and J. Melngailis. J., Appl. Phys. Lett., 49 (1989), 1584–6.
[6] P. G. Blauner, J. S. Ro, Y. Butt and J. Melngailis. J. Vac. Sci. Technol. B, 7 (1989), 609–17. 
[7] Carbon Deposition Technical Note (Hillsboro, OR: FEI Company, 2003), PN 4035 272 27241-A. 
[8] A. D. Della Ratta, J. Melngailis and C. V. Thompson. J. Vac. Sci. Technol. B, 11 (1993), 2195–9. 
[9] H. Komano, Y. Ogawa and T. Takigawa. Jpn. J. App. Phys., 28 (1989), 2372–5. 
[10] D. K. Stewart, A. F. Doyle and J. D. Casey, Jr. Electron-Beam, X-Ray, EUV, and Ion-Beam Submicrometer Lithographies for Manufacturing V, Proc. SPIE, 2437 (1995), 276–307. 
[11] L. R. Harriott, K. D. Cummings, M. E. Gross and W. L. Brown. Appl. Phys. Lett., 49 (1986), 1661–2. 
[12] T. Tao, J. S. Ro, J. Melngailis, Z. Xue and H. Kaesz. J. Vac. Sci. Technol. B, 8 (1990), 1826–9.
[13] J. Puretz and L. W. Swanson. J. Vac. Sci. Technol. B, 10 (1992), 2695–8. 
[14] K. Gamo, N. Takehara, Y. Hamaura, M. Tomita and S. Namba. Microelectron. Eng., 5 (1986), 163–70. 
[15] Z. Xu, T. Kosugi, K. Gamo and S. Namba. J. Vac. Sci. Technol. B, 7 (1989), 1959–62.
[16] R. J. Young and J. Puretz. J. Vac. Sci. Technol. B, 13 (1995), 2576–9.