Table 4523. FIB gas chemistries for etching and deposition processes.
Process |
Material |
|
Beam ions |
Common Precursors |
Etching |
Dielectric |
SiO2 |
|
XeF2 |
Polyimide |
|
H2O |
Dielectric (stops on Si or W) |
|
Trifluoroacetamide ("DE") |
Silicon |
|
XeF2, Cl2, Br2, I2 |
Metal |
Aluminum |
|
Cl2, Br2, C2H4I2, I2 |
Tungsten |
|
XeF2 |
Copper |
|
|
Deposition |
Oxide |
|
TEOS, TMCTS or PMCPS + O2/ H2O |
Metal |
|
W(CO)6, Mo(CO)6, Co(CO)6, Pt(PPh3)4 |
Al |
|
Trimethyl aluminum (TMA) Al2(CH3)3 [2] |
|
Trimethylamine alane (TMAA) [3] |
|
Triethylamine alane (TEAA) [3] |
|
Tri-isobutyl aluminum (TIBA), Al(C4H9)3 [4] |
Au |
|
Dimethyl gold hexafluoro acetylacetonate C7H7O2F6Au [5, 6] |
C |
Ga |
Naphthalene {C10H8}, or C14H10 |
|
Naphthalene (C10H8) [7] |
Cu |
|
Cu(hfac)TMVS [8] |
Fe |
Ga |
Iron pentacarbonyl {Fe(CO)5} [1] |
SiO2 |
|
Si(OCH3)4 [9] |
Ga |
Tetraethyl Orthosilicate {Si(OC2H5)4}, or C4H16Si4O4 |
|
A combination of siloxane and oxygen gases [10] |
Pd |
|
Palladium acetate [Pd(O2CCH3)2]3 [11] |
Pt |
|
(methylcyclopentadienyl) trimethyl platinum C9H16Pt [12, 13] |
Ga |
Methyl cyclopentadienyl trimethyl platinum {(CH3)3Pt(CpCH3)}, C5H5Pt(CH3)3, or (CH3C5H4)(CH3)3Pt |
W |
Ga |
Tungsten hexacarbonyl {W(CO)6} |
|
Tungsten hexafluoride WF6 [14] |
|
Tungsten hexafluoride, WF6 [15] |
Insulator (TEOS) |
|
(C2H5)4Si [16] |
Ta |
|
Pentaetoxy tantalum, Ta(OC2H5)5 [14] |
|
PMTA, Ta(OC2H5)5 [14] |
The materials deposited in FIB normally contain impurities. For instance, FIB-deposited tungsten material can consist of approximately 80% W, 5% O, 5% C, and 10% Ga if W(CO)6 precursor and Ga beam are used.
[1] Kazuo Furuya, Nanofabrication by advanced electron microscopy using intense and focused beam, Sci. Technol. Adv. Mater. 9 (2008) 014110.
[2] K. Gamo, N. Takakura, N. Samoto, R. Shimizu and S. Namba. Jpn. J. Appl.
Phys., 23 (1984), L293–5.
[3] M. E. Gross, L. R. Harriott and R. L. Opila, Jr. J. Appl. Phys., 68 (1990),
4820–4.
[4] R. L. Kubena, F. P. Stratton and T. M. Mayer. J. Vac. Sci. Technol. B, 6 (1988),
1865–8.
[5] G. M. Shedd, A. D. Dubner, C. V. Thompson and J. Melngailis. J., Appl. Phys.
Lett., 49 (1989), 1584–6.
[6] P. G. Blauner, J. S. Ro, Y. Butt and J. Melngailis. J. Vac. Sci. Technol. B, 7
(1989), 609–17.
[7] Carbon Deposition Technical Note (Hillsboro, OR: FEI Company, 2003), PN
4035 272 27241-A.
[8] A. D. Della Ratta, J. Melngailis and C. V. Thompson. J. Vac. Sci. Technol. B, 11
(1993), 2195–9.
[9] H. Komano, Y. Ogawa and T. Takigawa. Jpn. J. App. Phys., 28 (1989), 2372–5.
[10] D. K. Stewart, A. F. Doyle and J. D. Casey, Jr. Electron-Beam, X-Ray, EUV, and
Ion-Beam Submicrometer Lithographies for Manufacturing V, Proc. SPIE, 2437
(1995), 276–307.
[11] L. R. Harriott, K. D. Cummings, M. E. Gross and W. L. Brown. Appl. Phys.
Lett., 49 (1986), 1661–2.
[12] T. Tao, J. S. Ro, J. Melngailis, Z. Xue and H. Kaesz. J. Vac. Sci. Technol. B, 8
(1990), 1826–9.
[13] J. Puretz and L. W. Swanson. J. Vac. Sci. Technol. B, 10 (1992), 2695–8.
[14] K. Gamo, N. Takehara, Y. Hamaura, M. Tomita and S. Namba. Microelectron.
Eng., 5 (1986), 163–70.
[15] Z. Xu, T. Kosugi, K. Gamo and S. Namba. J. Vac. Sci. Technol. B, 7 (1989),
1959–62.
[16] R. J. Young and J. Puretz. J. Vac. Sci. Technol. B, 13 (1995), 2576–9.
|