Practical Electron Microscopy and Database

An Online Book, Second Edition by Dr. Yougui Liao (2006)

Practical Electron Microscopy and Database - An Online Book

Chapter/Index: Introduction | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Appendix

FIB Precursor Gas Chemistries for Ion-beam/FIB/Electron-beam Induced Etching and Deposition Processes

Table 4523. FIB gas chemistries for etching and deposition processes.

Process  Material    Beam ions Common Precursors
Etching Dielectric SiO2   XeF2
Polyimide   H2O
Dielectric (stops on Si or W)   Trifluoroacetamide ("DE")
Silicon   XeF2, Cl2, Br2, I2
Metal Aluminum   Cl2, Br2, C2H4I2, I2
Tungsten   XeF2
Copper    
Deposition Oxide   TEOS, TMCTS or PMCPS + O2/ H2O
Metal   W(CO)6, Mo(CO)6, Co(CO)6, Pt(PPh3)4
Al   Trimethyl aluminum (TMA) Al2(CH3)3 [2]
  Trimethylamine alane (TMAA) [3]
  Triethylamine alane (TEAA) [3]
  Tri-isobutyl aluminum (TIBA), Al(C4H9)3 [4]
Au   Dimethyl gold hexafluoro acetylacetonate C7H7O2F6Au [5, 6]
C Ga Naphthalene {C10H8}, or C14H10
  Naphthalene (C10H8) [7]
Cu   Cu(hfac)TMVS [8]
Fe Ga Iron pentacarbonyl {Fe(CO)5} [1]
SiO2   Si(OCH3)4 [9]
Ga Tetraethyl Orthosilicate {Si(OC2H5)4}, or C4H16Si4O4
  A combination of siloxane and oxygen gases [10]
Pd   Palladium acetate [Pd(O2CCH3)2]3 [11]
Pt   (methylcyclopentadienyl) trimethyl platinum C9H16Pt [12, 13]
Ga Methyl cyclopentadienyl trimethyl platinum {(CH3)3Pt(CpCH3)}, C5H5Pt(CH3)3, or (CH3C5H4)(CH3)3Pt
W Ga Tungsten hexacarbonyl {W(CO)6}
  Tungsten hexafluoride WF6 [14]
  Tungsten hexafluoride, WF6 [15]
Insulator (TEOS)   (C2H5)4Si [16]
Ta   Pentaetoxy tantalum, Ta(OC2H5)5 [14]
  PMTA, Ta(OC2H5)5 [14]

 

The materials deposited in FIB normally contain impurities. For instance, FIB-deposited tungsten material can consist of approximately 80% W, 5% O, 5% C, and 10% Ga if W(CO)6 precursor and Ga beam are used.

 

 

 

 

 

 

 

 

[1] Kazuo Furuya, Nanofabrication by advanced electron microscopy using intense and focused beam, Sci. Technol. Adv. Mater. 9 (2008) 014110.
[2] K. Gamo, N. Takakura, N. Samoto, R. Shimizu and S. Namba. Jpn. J. Appl. Phys., 23 (1984), L293–5. 
[3] M. E. Gross, L. R. Harriott and R. L. Opila, Jr. J. Appl. Phys., 68 (1990), 4820–4. 
[4] R. L. Kubena, F. P. Stratton and T. M. Mayer. J. Vac. Sci. Technol. B, 6 (1988), 1865–8. 
[5] G. M. Shedd, A. D. Dubner, C. V. Thompson and J. Melngailis. J., Appl. Phys. Lett., 49 (1989), 1584–6.
[6] P. G. Blauner, J. S. Ro, Y. Butt and J. Melngailis. J. Vac. Sci. Technol. B, 7 (1989), 609–17. 
[7] Carbon Deposition Technical Note (Hillsboro, OR: FEI Company, 2003), PN 4035 272 27241-A. 
[8] A. D. Della Ratta, J. Melngailis and C. V. Thompson. J. Vac. Sci. Technol. B, 11 (1993), 2195–9. 
[9] H. Komano, Y. Ogawa and T. Takigawa. Jpn. J. App. Phys., 28 (1989), 2372–5. 
[10] D. K. Stewart, A. F. Doyle and J. D. Casey, Jr. Electron-Beam, X-Ray, EUV, and Ion-Beam Submicrometer Lithographies for Manufacturing V, Proc. SPIE, 2437 (1995), 276–307. 
[11] L. R. Harriott, K. D. Cummings, M. E. Gross and W. L. Brown. Appl. Phys. Lett., 49 (1986), 1661–2. 
[12] T. Tao, J. S. Ro, J. Melngailis, Z. Xue and H. Kaesz. J. Vac. Sci. Technol. B, 8 (1990), 1826–9.
[13] J. Puretz and L. W. Swanson. J. Vac. Sci. Technol. B, 10 (1992), 2695–8. 
[14] K. Gamo, N. Takehara, Y. Hamaura, M. Tomita and S. Namba. Microelectron. Eng., 5 (1986), 163–70. 
[15] Z. Xu, T. Kosugi, K. Gamo and S. Namba. J. Vac. Sci. Technol. B, 7 (1989), 1959–62.
[16] R. J. Young and J. Puretz. J. Vac. Sci. Technol. B, 13 (1995), 2576–9.