Electron microscopy
 
Weighted Accuracy in ML
- Python Automation and Machine Learning for ICs -
- An Online Book -
Python Automation and Machine Learning for ICs                                                           http://www.globalsino.com/ICs/        


Chapter/Index: Introduction | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Appendix

=================================================================================

The objective function of a linear Support Vector Machine (SVM) in machine learning can be given by,

          objective function -------------------------------------- [3704a]

where,:

  • represents the weight associated with each training example.
  • is the hypothesis function, which is the output for input (i) using parameters .
  • (i) is the true label of the training example (i).
  • is an indicator function that equals 1 if the predicted output () matches the true label ((i)), and 0 otherwise.
  • : This is the objective function that the algorithms aim to maximize. The objective is to find the hyperplane that maximally separates the data points of different classes.
  • This sum part of the equation is a summation over all training examples ().

 

============================================

         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         

 

 

 

 

 



















































 

 

 

 

 

=================================================================================