Google's Edge TPU Hardware - Python and Machine Learning for Integrated Circuits - - An Online Book - |
||||||||
Python and Machine Learning for Integrated Circuits http://www.globalsino.com/ICs/ | ||||||||
Chapter/Index: Introduction | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Appendix | ||||||||
================================================================================= Google's Edge TPU hardware is composed of three main components of the neural node, the multiplier, the adder and the activation function. [1] Figure 3822a shows Google's Edge TPU hardware. (a) (b) Figure 3822a. Google's Edge TPU hardware: (a) The chip [1], and (b) Edge TPU SoM Block Diagram [2]. Figures 3822b and 3822c shows the adder and pipeline in Google's Edge TPU hardware. Figure 3822b. Adder in Google's Edge TPU hardware. Figure 3822c. Pipeline in Google's Edge TPU hardware. AutoML has been used to customize EfficientNets for Edge TPU to obtain better latency and accuracy (shown in Figure 3822).
============================================
[1] Google Coral Edge TPU explained in depth, https://qengineering.eu/google-corals-tpu-explained.html.
|
||||||||
================================================================================= | ||||||||
|
||||||||