Electron microscopy
 
.fit()/.predict()
- Python for Integrated Circuits -
- An Online Book -
Python for Integrated Circuits                                                                                   http://www.globalsino.com/ICs/        


Chapter/Index: Introduction | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Appendix

=================================================================================

The trained model can be used to make a prediction by:
        myPrediction = model.predict(input_data, steps=2)
where,
        myPrediction -- Returns a Numpy array of predictions.
        .predict -- With this method, we can pass:
                 i) A Dataset instance,
                 ii) Numpy array,
                 iii) A TensorFlow tensor, or list of tensors,
                 iv) A generator of input example.
                 v) steps – Determines the total number of steps before declaring the prediction round finished. Here, steps = 2 since there are only two examples.

With a Keras model for training, the significance of the .fit() method is that it can define the number of epochs.

===================================================

Machine learning: KNN algorithm: code:
        Machine learning: KNN algorithm
Input:        
        Machine learning: KNN algorithm
Output:        
        Machine learning: KNN algorithm

===================================================

Machine learning: KNN algorithm (version 3 -- more functions are added): code:
        Machine learning: KNN algorithm
        Machine learning: KNN algorithm
Input:        
        Machine learning: KNN algorithm
Output:        
        Machine learning: KNN algorithm        
        Machine learning: KNN algorithm        

============================================

         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         

 

 

 

 

 



















































 

 

 

 

 

=================================================================================