Integrated Circuits and Materials

An Online Book, First Edition by Dr. Yougui Liao (2018)

Practical Electron Microscopy and Database - An Online Book

Chapter/Index: Introduction | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Appendix

Bandgap Energies of Semiconductor Materials and Dielectrics

Figure 4543a shows the distribution of band gap versus dielectric constant of dielectrics.

Distribution of band gap versus dielectric constant of dielectrics

Figure 4543a. Distribution of band gap versus dielectric constant of dielectrics.

Figure 4543b shows the average energy (radiation ionization energy) required to form one electron-hole pair versus bandgap energy for a number of semiconductor materials.

The average energy required to form one electron-hole pair versus bandgap energy for a number of semiconductor materials

Figure 4543b. The average energy required to form one electron-hole pair versus bandgap energy for a number of semiconductor materials [1].

Figure 4543c shows bandgap and chemical bond length for semiconductors used in visible LEDs (light emitting devices).

Bandgap and chemical bond length for semiconductors used in visible LEDs (light emitting devices)

Figure 4543c. Bandgap and chemical bond length for semiconductors used in visible LEDs (light emitting devices). Adapted from [2]

Table 4543 list the bandgap energies of semiconductor materials and dielectrics.

Table 4543. Bandgap energies of semiconductor materials and dielectrics. [1]

  Temperature Atomic Number (Z) Band Gap (eV) Static dielectric constant (K) Conduction band (CB) offsets (eV) Energy per e-h Pair (eV)
Best γ-Ray Energy Resolution (FWHM)
Al2O3
8.8
9
2.8
 
CdTe
300 K
48-52
1.47
4.43
3800 eV @ 122 keV
7500 eV @ 661 keV
Ge
77 K
32
0.74
2.98
420 eV @ 100 keV
920 eV @ 660 keV
1300 eV @ 1330 keV
GaAs
300 K
31-33
1.43
4.2
650 eV @ 60 keV
2600 eV @ 122 keV
HfO2
5.8
25
1.4
 
HfSiO4
6.5
11
1.8
 
HgI2
300 K
80-53
2.13
6.5
850 eV @ 6 keV
3500 eV @ 122 keV
In0.53Ga0.47As     
0.75
       
InSb     
0.17
       
a-LaAlO3
5.6
30
1.8
 
La2O3
6
30
2.3
 
Si
300 K
14
1.12
3.61
-
1.17 @ 77 K
 
Si3N4
5.3
7
2.4
 
SiO2
9
3.9
3.2
 
SrTiO3
3.2
2000
0
 
Ta2O5
4.4
22
0.35
 
TiO2
3.5
60
0
 
Y2O3
6
15
2.3
 
ZrO2
5.8
25
1.5
 

 

Note that at a misfit dislocation, the effective energy gap Eg is reduced. However, line defect self-interstitials in silicon give rise to an energy-loss peak at 2.5 eV, measured by using EELS technique. [3]

 

 

 

[1] Glenn F. Knoll, Radiation Detection and Measurement, Wiley (1979).
[2] Ponce, F. A. and Bour, D.P., Nature, 386, (1997) 351.
[3] Takeda, S., Terauchi, M., Tanaka, M., and Kohyama, M. (1994) Line defect configuration incorporated with self-interstitials in Si: A combined study by HRTEM, EELS and electronic calculation. In Electron Microscopy 1994, Proc. 13th Int. Cong. Electron Microsc., Paris, Vol. 3, pp. 567–568.