Electron microscopy
 
PythonML
Software/Interface/API used in Data Science and Machine Learning
- Python Automation and Machine Learning for ICs -
- An Online Book: Python Automation and Machine Learning for ICs by Yougui Liao -
Python Automation and Machine Learning for ICs                                                           http://www.globalsino.com/ICs/        


Chapter/Index: Introduction | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Appendix

=================================================================================

Table 3346. Software/interface used in data science and machine learning.

Software System Function Reference
Amazon Redshift ML   ML models directly in a data warehouse page3340
Apache HBase   NoSQL database, data warehouse page3347
page3393
Apache Flink   For stream (data) processing, Flink is used in data lakes page3347
page3335
Apache Hive   Data warehouse. Hive and HDFS are part of the Hadoop ecosystem. page3394
page3305
Apache Impala    Provides high-performance, low-latency SQL queries page3337
Apache Kudu   For fast analytics on rapidly changing data page3336
Apache Spark Built on Scala Data processing page3347
Apache Storm   Data processing page3347
Apache Superset   An open-source to create dashboards for data understanding page3340
AWS Kinesis   Data collection page3347
AWS Machine Learning   Machine Learning API page3340
AWS S3   Data lake page3338
Azure Data Lake Storage   Data lake page3338
Catalyst   Optimize the logical and physical plan of SQL queries page3331
BERT   Natural language processing page3344
BigQuery ML   ML models directly in a data warehouse, evaluating a ML model page3340
page3332
Cassandra   Data storage page3347
Dask A Python library Parallel computing feature engineering at scale page3348
Elastic Stack   Monitoring and management page3347
Elasticsearch   Data storage page3347
Facets Overview   Open-source tool for visualizing and understanding machine learning datasets page3345
Featuretools A library Automated feature engineering at scale page3348
FlinkML (for distributed machine learning)   Analytics and machine learning page3347
Google Cloud AI   Machine Learning API page3340
Google AutoML   A suite of machine learning products page3751
Google Cloud Natural Language API   Analyzing and understanding the content of text page3342
Google Cloud Shell   Free online development environment page3365
Google Cloud Platform (GCP)   A comprehensive cloud computing service page3391
Google Kubernetes Engine (GKE)   Managed environment page3373
Google Vertex Vizier   A hyperparameter tuning service page3751
Grafana   Data visualization and reporting page3347
GPT   Natural language processing page3344
Hadoop   Data lake, Hadoop is needed if you want to integrate with HDFS page3338
page3319
Hadoop Distributed File System (HDFS)   Data lake. Hive and HDFS are part of the Hadoop ecosystem. page3395
page3305
LSTM networks   Convert speech into text page3344
Kafka   Data collection page3347
Keras   For building and training deep learning models page4243
Kibana   Data visualization and reporting page3347
MapReduce   For easily writing applications page3400
Microsoft Azure Machine Learning   Machine Learning API page3340
MLlib (Spark)   Analytics and machine learning page3347
Power BI   Create dashboards for data understanding and reporting page3340
Prometheus   Monitoring and management page3347
PyArrow   Apache data ingestion frameworks (ADIF) for CSV to DataFrame conversion page3328
PyFlink   Apache data ingestion frameworks (ADIF) for CSV to DataFrame conversion page3328
PySpark   Apache data ingestion frameworks (ADIF) for CSV to DataFrame conversion page3328
PyTorch (for model training)   Analytics and machine learning, developed by Facebook page3347
RabbitMQ   Data collection page3347
R-CNN   Object detection and image segmentation  page3344
Mask R-CNN   Object detection and image segmentation  page3344
RNNs networks   Convert speech into text page3344
Redis   Data storage page3347
scikit-learn   User-friendly machine learning library page4312
Splunk   Monitoring and management page3347
Tableau   Data visualization and reporting page3347
TensorFlow   Analytics and machine learning page3347
TensorFlow Data Validation (TFDV)   Analyze data to find potential problems page3349
Tungsten   Improve the efficiency of memory and CPU for Spark applications page3330
YOLO   Object detection and image segmentation  page3344

 

===========================================

         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         

 

 

 

 

 



















































 

 

 

 

 

=================================================================================