Application of Aberration Corrections in EMs
- Practical Electron Microscopy and Database -
- An Online Book -  


This book (Practical Electron Microscopy and Database) is a reference for TEM and SEM students, operators, engineers, technicians, managers, and researchers.



Additional capabilities of EMs can be obtained by using aberration correctors. For instance, the novel applications include low-kV microscopy [1 - 5], imaging and analytical in situ dynamic experiments [6 – 14], enhanced contrast and resolution in thick biological specimens [15 - 17], quantitative image analysis [18-20], atomic resolution spectroscopy [21 - 23], and three-dimensional (3D) atomic characterization [24 - 28], to name but a few.


[1] Botton, G. A., Lazar, S., & Dwyer, C. (2010). Elemental mapping at the atomic scale using low accelerating voltages. Ultramicroscopy. doi:10.1016/j.ultramic.2010.03.008.
[2] Jin, C., Suenaga, K., & Iijima, S. (2009). In situ formation and structure tailoring of carbon onions by high-resolution transmission electron microscopy. Journal of Physical Chemistry C, 113, 5043–5046.
[3] Krivanek, O. L., Dellby, N., Murfitt, M. F., Chisholm, M. F., Pennycook, T. J., Suenaga, K., et al. (2010). Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy. doi:10.1016/j.ultramic.2010.02.007
[4] Suenaga, K., Sato, Y., Liu, Z., Kataura, H., Okazaki, T., Kimoto, K., et al. (2009). Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nature Chemistry, 1, 415–418.
[5] Bell, D., Kolmykov, D., and Russo, C., (2011) Low-Voltage (40 kV) Aberration-Corrected, Monochromated, Imaging for Carbon Nanostructures, Microscopy and Microanalysis, 17, 1490-1491.
[6] Barwick, B., Park, H. S., Kwon, O.-H., Baskin, J. S., & Zewail, A. H. (2008). 4D imaging of transient structures and morphologies in ultrafast electron microscopy. Science, 322, 1227–1231.
[7] Baum, P., & Zewail, A. H. (2009). 4D attosecond imaging with free electrons: Diffraction methods and potential applications. Chemical Physics, 366, 2–8.
[8] De Graf, M. (2009). Recent progress in Lorentz transmission electron microscopy: Applications to multi-ferroic materials. European Symposium on Martensitic Transformations (ESOMAT), 2009, 01002. doi:10.1051/esomat/200901002
[9] Gai, P. L., & Boyes, E. D. (2009). Advances in atomic resolution in situ environmental transmission electron microscopy and 1Å aberration corrected in situ electron microscopy. Microscopy Research and Technique, 72, 153–164.
[10] King, W. E., Campbell, G. H., Frank, A., Reed, B., Schmerge, J. F., Siwick, B. J., et al. (2005). Ultrafast electron microscopy in materials science, biology, and chemistry. Journal of Applied Physics, 97, 111101.
[11] Stach, E. A. (2008). Real-time observations with electron microscopy. Materials Today, 11, 50–58.
[12] Tanase, M., & Petford-Long, A. K. (2009). In situ TEM observation of magnetic materials. Microscopy Research and Technique, 72, 187–196.
[13] Zewail, A. H. (2010). Four-dimensional electron microscopy. Science, 328, 187–193.
[14] Zewail, A. H., & Thomas, J. M. (2010). 4D electron microscopy: Imaging in space and time. Hackensack, NJ: Imperial College Press.
[15] Henderson, R. (2004). Realizing the potential of electron cryo-microscopy. Quarterly Review of Biophysics, 37, 3–13.
[16] Jensen, G. J., & Briegel, A. (2007). How electron cryotomography is opening a new window onto prokaryotic ultrastructure. Current Opinions in Structural Biology, 17, 260–267.
[17] Leis, A., Rockel, B., Andrees, L., & Baumeister, W. (2009). Visualizing cells at the nanoscale. Trends in Biochemical Sciences, 34, 60–70.
[18] Van Aert, S., den Dekker, A. J., & Van Dyck, D. (2004). How to optimize the experimental design of quantitative atomic resolution TEM experiments? Micron, 35, 425–429.
[19] Van Aert, S., den Dekker, A. J., Van Dyck, D., & van den Bos, A. (2002). High-resolution electron microscopy and electron tomography: Resolution versus precision. Journal of Structural Biology, 138, 21–33.
[20] Van Aert, S., Van Dyck, D., & den Dekker, A. J. (2006). Resolution of coherent and incoherent imaging systems reconsidered—classical criteria and a statistical alternative. Optics Express, 14, 3830–3839.
[21] Allen, L. J. (2008). Electron microscopy: New directions for chemical maps. Nature Nanotechnology, 3, 255–256.
[22] Muller, D. A. (2009). Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Materials, 8, 263–270.
[23] Williams, D. B., & Watanabe, M. (2007). Progress of x-ray analysis in transmission electron microscopes from 1977 to 2007 and toward the future. Acta Microscopica, 16(Suppl. 2), 13–14.
[24] Bar Sadan, M., Houben, L., Wolf, S. G., Enyashin, A., Seifert, G., Tenne, R., et al. (2008). Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures. Nano Letters, 8, 891–896.
[25] Jinschek, J. R., Batenburg, K. J., Calderon, H. A., Kilaas, R., Radmilovic, V., & Kisielowski, C. (2008). 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: Prospects of atomic resolution electron tomography. Ultramicroscopy, 108, 589–604.
[26] Midgley, P. A., & Dunin-Borkowski, R. E. (2009). Electron tomography and holography in materials science. Nature Materials, 8, 271–280.
[27] O’Keefe, M. A., Downing, K. H., Wenk, H.-R., & Meisheng, H. (2005). Atomic-resolution 3D electron microscopy with dynamic diffraction. Microscopy and Microanalysis, 11, 314–315.
[28] Van den Broek, W., Van Aert, S., & Van Dyck, D. (2009). A model based atomic resolution tomographic algorithm. Ultramicroscopy, 109, 1485–1490.



The book author (Yougui Liao) welcomes your comments, suggestions, and corrections, please click here for submission. If you let book author know once you have cited this book, the brief information of your publication will appear on the “Times Cited” page.