Chapter/Index: Introduction | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Appendix
In EM measurements, electrons also scatter inelastically with phonons. These energy losses are of the order of a few tens of millielectronvolts (meV) and can therefore not be detected with transmission EELS measurement in an electron microscope. That is, such energy losses induced by crystal vibrations (called phonons) are indistinguishable from elastically scattered electrons. Furthermore, these quasi-elastic scattering processes broaden the zero-loss peak of EELS on the high-energy side. Table 4347 shows that electrons interact with 1 electron, many electrons, 1 nucleus, and many nuclei in solids. Table 4347. Effects of interactions of electrons in solids.
In EM systems, the development of energy-filtered imaging attachments [1 - 5] has allowed removing the intensity from electrons scattered inelastically by any mechanism other than phonon scattering.
[1] T. Honda, T. Tomita, T. Kaneyama, Y. Ishida, Ultramicroscopy
54 (2–4) (1994) 132–144.
|