Electron microscopy
 
164 (P-3m1) Space Group
- Practical Electron Microscopy and Database -
- An Online Book -
Microanalysis | EM Book                                                                                   https://www.globalsino.com/EM/        

This book (Practical Electron Microscopy and Database) is a reference for TEM and SEM students, operators, engineers, technicians, managers, and researchers.
=================================================================================

 

Table 3095a. P-3m1 (164) space group.

Name in the International Tables for Crystallography
P-3m1 P
164 -3m
Crystal system
Trigonal -3m
Asymm
0≤ x ≤ 2/3 and 0 ≤ y ≤ 1/3 and 0 ≤ z ≤ 1 and x ≤ (1+y)/2 and y ≤ x/2
12
Symmetry (atomic coordinates)

Y, X, -Z; -Y, -X, Z; X-Y, -Y, -Z; -X+Y, Y, Z; -X, -X+Y, -Z; X, X-Y, Z.
X, Y, Z; -Y, X-Y, Z; -X+Y, -X, Z; X-Y, X, -Z; -X, -Y, -Z; Y, Y-X, -Z.

Indices

k, h, -l; -k, -h, l; h, -h-k, -l; -h, h+k, l; -h-k, k, -l; h+k, -k, l.

Table 3095b. Examples of materials with P-3m1 (164) space group.

  Parameters
Angles
α = 90.0°; β = 90.0°; γ = 120.0°
 
Material
Ba3NiNb2O9 [3]
Lattice parameters
a = b = 5.7550(5) Å; c = 7.0656(2) Å
XRD pattern
The (112) and (103) peaks in the inset indicates 1:2 ordering of B site ions (-Ni-Nb-Nb-)
The (112) and (103) peaks in the inset indicates 1:2 ordering of B site ions (-Ni-Nb-Nb-)
HAADF Z-contrast
HAADF Z-contrast of Ba3NiNb2O9
The intensities of the Nb and Ni atom columns in [010] direction shows the -Ni-Nb-Nb- ordering. Brightest contrast: Ba (Z=88); brighter contrast: Nb (Z = 73); weak contrast: Ni (Z=46).
 
Material
CaAl2Si2 [1]
Structure with AlSi4 trigonal pyramids and CaSi6 trigonal
antiprisms (refer to MgAl2Ge2 below)
CaAl2Si2
 
Material
K3Na(CrO4)2
Lattice parameters
a = b = 5.858 Å; c = 7.523 Å
 
Material
Mg(OH)2
Lattice parameters
a = b = 3.1420 Å; c = 4.7660 Å
 
Material
(K,Na)3Na(SO4)2 (aphthitalite)
Lattice parameters
a = b = 5.68 Å; c = 7.31 Å
 
Material
MgAl2Ge2 [1]
Lattice parameters
a = b = 4.11693(5) Å; c = 6.7873(1) Å
Cell volume V
99.627(3) Å3
Atomic coordinates
Mg: Wyckoff position = 1a, x = 0, y = 0, z = 0; Al: Wyckoff position = 2d, x = ⅓, y = ⅔, z = 0.6353(3); Ge: Wyckoff position = 2d, x = ⅓, y = ⅔, z = 0.2419(2)
Interatomic distances and coordination polyhedra
Atoms   δ (Å) Polyhedron
Mg -6 Ge 2.8888(8) MgAl2Ge2
Al -3 Ge
-1 Ge
2.5188(8)
2.6701(24)
MgAl2Ge2
Ge -3 Al
-1 Al
-3 Mg
2.5188(8)
2.6701(24)
2.8888(8)
MgAl2Ge2
 
Material
α-Zr2N2S [2]
Lattice parameters
a = b = 3.605(2) Å; c = 6.412(3) Å
HRTEM
α-Zr2N2S
Inset: 0 0 1 zone axis electron diffraction pattern in hexagonal symmetry without superstructure reflections

For hcp crystals, the (0 0 0 l) reflections, e.g. for the case with 164 (P-3m1) space group, are forbidden when l is odd. However, those reflection positions often show diffraction intensity, which is probably caused by chemical order on the basal planes, or by double or multiple diffraction (scattering).

For [0 1 -1 0] Sb3Te2 in Figure 3095a, the ratio of AB/CD is the layer number (N) in a unit cell. We can know the Sb3Te2 crystal belongs to the P-3m1 space group as N is 9, a multiple of 3. Note that we can index diffraction patterns starting from comparing experimental d-spacings and theoretical calculations obtained from known lattice parameters, for instance, use the excel file for crystals with P-3m1 space group.

[0001] η-phase Cu3Si
   
[0001] η-phase Cu3Si [7]
(a = 4.06Å and c = 7.33Å)
   
[0 1 -1 0] Ge2Bi2Te5
FFT of a Sb3Te2 crystal
 
[0 1 -1 0] Ge2Bi2Te5. [4]
[0 1 -1 0] Sb3Te2. [4]
 
[-1 2 -1 0] Ge2Bi2Te5
[2 -1 -1 0] Ge2Bi2Te5
[2 -1 -1 0] Ge2Bi2Te5
[-1 2 -1 0] Ge2Bi2Te5. [4]
[2 -1 -1 0] Ge2Bi2Te5
(space group p-3m1) [4]
[2 -1 -1 0] Ge2Bi2Te5. [4]
indexed electron diffraction patterns of HCP crystals
Ge1Sb2Te4
Ge3Sb2Te6
[1 1 -2 0] Ge1Sb2Te4. [5]
[1 1 -2 0] Ge1Sb2Te4. [6]
(a' = 0.425 nm and c' = 4.10 nm)
[1 1 -2 0] Ge3Sb2Te6. [6]
(a' = 0.425 nm and c' = 6.26 nm)
Ge2Sb2Te5
 
[1 1 -2 0] Ge2Sb2Te5. [6]
(a' = 0.425 nm and c' = 1.827 nm)
 
[3 -3 0 1] η-phase Cu3Si
   
[3 -3 0 1] η-phase Cu3Si [7]
(a = 4.06Å and c = 7.33Å)
   
[1 4 -11 1] Ge2Bi2Te5
[1 0 -10 -1] Ge2Bi2Te5
[1 4 -11 1] Ge2Bi2Te5. [4]
[1 0 -10 -1] Ge2Bi2Te5. [4]

Figure 3095a. Examples of indexed electron diffraction (or FFT) patterns of 164 (P-3m1) HCP crystals.



 

 

 

 

[1] Svitlana Pukas, Liliya Pylypchak, Oksana Matselko, Pavlo Demchenko, Roman Gladyshevskii, MgAl2Ge2 – a new representative of the structure type CaAl2Si2, Chem. Met. Alloys 5 (2012) 59-65.
[2] Chad Alan Stoltz, Synthesis of Layered Group IV Nitride Materials by Soft Chemical Anion Metathesis, thesis, 2005.
[3] Jungmin Hwang, Magnetoelectric and Multiferroic Properties in Layered 3d Transition Metal Oxides, thesis, 2012.
[4] Chang Woo Sun, A Transmission Electron Microscopy Study on the Microstructural Properties of Te-based Chalcogenide Thin Films, Doctoral Thesis, 2010.
[5] Enzo Rotunno, Advanced analytical transmission electron microscopy methodologies for the study of the chemical and physical properties of semiconducting nanostructures, Doctoral Thesis, 2014.
[6] B. J. Kooi and J. Th. M. De Hosson, Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x („x = 1, 2, 3…) phase change material, J. Appl. Phys.92 (7), 3584 (2002). 
[7] Cheng-Yen Wen & Frans Spaepen, In-situ electron microscopy of the phases of Cu3Si, Philosophical Magazine, 87(35), 5581-5599, 2007.

 

 

=================================================================================
The book author (Yougui Liao) welcomes your comments, suggestions, and corrections, please click here for submission. If you let book author know once you have cited this book, the brief information of your publication will appear on the “Times Cited” page.