GexSbyTez (GST)
- Practical Electron Microscopy and Database -
- An Online Book -


http://www.globalsino.com/EM/  


This book (Practical Electron Microscopy and Database) is a reference for TEM and SEM students, operators, engineers, technicians, managers, and researchers.

=================================================================================

In general, crystalline GST (GexSbyTez) thin films show two types of structures: [5, 61]
         i) Metastable NaCl-cubic structure (space group Fm-3m).
In this structure, the 4A sites are occupied by Te atoms and the 4B sites are randomly occupied by Ge atoms, Sb atoms and 10-20% vacancies depending on the GST composition [5]. On the other hand, there is a relatively large displacement of Ge-atoms.
         ii) Stable hexagonal structure (space group p-3m1).

Note that, in formation of GST crystals, a stacking disorder parallel to the basal plane increases with increasing cooling rates.

In poly-crystalline GST, excess Ge atoms and Sb atoms do not fill up the vacancies, but rather segregate on the grain boundaries. In amorphous binary GeTe and quasibinary GST, the Ge-Te bonds are shorter and stronger than those in the corresponding crystals, and thus the amorphous phase is locally more ordered than the crystalline phase [62].

Table 3161. Structural properties of some GexSbyTez (GST) compositions.

Composition
XRD
Electron diffraction
HRTEM image
Crystal structure
Electrical resistivity
Lattice constant
(nm)
Atomic density (atom·Å-3)
Crystall-ization tempera-ture (°C)
Melting point (°C)
Note
Reference
Amorphous Sb
            0.0321       [13]
Crystalline Sb
     
Sb
  a = 0.43; c = 1.12       Space group R-3m. Interatomic distances: 0.296 nm and 0.430 nm. [13]
Ag-Sb2Te
                  Crystalline growth velocity 5.99 m/s. [15]
AgInSbTe
              200 537    
Amorphous Ag4In3Sb67Te26
            0.0309       [20]
Crystalline In3Sb67Te26
            0.0324       [20]
GaSb
              195 589    
GeCu2Te3
              250 500   [24]
Amorphous GeTe
    Medium-range ordering with fringe spacing of 0.317 nm:
medium-range ordering
Asymmetrical tetrahedral structure:
Asymmetrical tetrahedral structure GeTe
    0.0334 182 725 Bond length: Ge-Te = 0.255±0.004 nm; Te-Te = 0.425±0.004 nm. Bond angle: Te-Ge-Te = 112°. Still various structure models for the local order. [16, 59]
Amorphous 4%C- GeTe
              290   Improved amorphous phase stability compared to GeTe [63]
Amorphous 10%C- GeTe
              340     [63]
Crystalline GeTe
                  Bond length: Ge-Te = 0.290±0.004 nm; Te-Te = 0.428±0.004 nm. Bond angle: Te-Ge-Te = 93°.  
GeTe
          Rhombohedral; a = 0.5996; α = 88.18° ~0.0358     <400 °C has a trigonal (R-3m) structure (distorted NaCl type structure) [1, 2, 17]
GeTe
          a = 0.60; α = 90° ~0.0358     >400 °C has NaCl (B1) type structure [1, 2, 17]
GeTe
          a' = 0.417; c' = 1.071 ~0.0358     With an a, b, c stacking sequence of close packed planes along the c'-axis of Te–Ge–Te–Ge–Te–Ge– [17]
Amorphous Ge8Sb2Te11
            0.0309       [17]
Amorphous Sb2Te
            0.0309       [13]
Sb2Te (δ)
          a = 0.4272; c = 1.7633       Space group P-3m1; crystalline growth velocity 13.16 m/s. [15]
Sb2Te2
          a = 0.426; c = 2.39       Space group P-3m1  
Amorphous Sb2Te3
            0.0289       [13]
Sb2Te3
          a = 1.0426; α = 23°31'   90-100 570- 621 Trigonal R-3m (tetradymite) structure; poor stability [3]
Sb2Te3
     
Sb2Te3
  a' = 0.425; c' = 3.04 0.0313 90-100 621 Space group R-3m; with an a, b, c stacking along the c'-axis Te–Sb–Te–Te–Sb– [19]
Sb4Te3 (γ)
a = 0.426; c = 4.155 Space group P-3m1
Sb70Te30
544.5
W-SbxTey
W-SbxTey XRD 132 (for 0% W), 158 (for 0.7% W), 189 (for 2.9% W), and 233 (for 5.2% W) 536 (for 0% W), 537 (for 0.7% W), 539 (for 2.9% W), and 539 (for 5.2% W) [47]
Molten GexSbyTez
        FCC HCP amorphous fcc Ge2Sb2Te5       melting temperature of GST Electromigration: Ge and Sb atoms migrate to the cathode, while Te atoms migrate to the anode:
GST electromigration
[40, 42 - 44]
Amorphous Ge2Sb2Te5
Ge2Sb2Te5 XRD
Ge2Sb2Te5 XRD
      FCC HCP amorphous fcc Ge2Sb2Te5   0.0300    

Stable at room temperature for more than 10 years. Both α- and c-Ge2Sb2Te5 can only be etched by nitric acid (HNO3) aqueous solution, but cannot be etched by H2C2O4, HClO4, CH3COOH, H2SO4, H3PO4, HCl; electric conductivity 3 Ω-1-m-1; thermal conductivity 0.2 W/K-m; specific heat 1.25 x 106 J/K-m3; activation energy of crystallization: 3.636 eV; activation energy of structural transformation from fcc to hcp: 1.579 eV; Band gap: 0.7 - 1.0 eV.

[13, 18, 30, 42, 54]
Metastable fcc Ge2Sb2Te5
      FCC HCP amorphous fcc Ge2Sb2Te5 a = 0.60 0.0335 151-174 632 Metastable phase NaCl-type structure with the Te atoms on one fcc sublattice and with the Ge and Sb atoms and 20% of vacancies distributed randomly over the other fcc sublattice; Fm-3m; electric conductivity 2770 Ω-1-m-1; thermal conductivity 0.5 W/K-m; specific heat 1.25 x 106 J/K-m3. [5, 9, 17, 42, 45]
Stable hcp Ge2Sb2Te5
Ge2Sb2Te5     FCC HCP amorphous fcc Ge2Sb2Te5 a' = 0.425; c' = 1.72 ~ 1.827 0.0335 151-174 632 Trigonal cell with stable phase hexagonal structure; (P-3m1); Stacking sequence along the c'-axis of a four layer block of GeTe and one repeat unit of Sb2Te3: Te–Sb–Te–Ge–Te– Te–Ge–Te–Sb–; thermal conductivity 1.59 W•m-1•K-1, density 6300 kg•m-3, specific heat 1.25 x 106 J/K-m3, Young's modulus 58.7 GPa, thermal expansion coefficient 17.4 × 10-6 K-1, Poisson's ratio 0.3. [4, 6 - 9, 17 - 18, 34 - 37, 42]
Agx(Ge2Sb2Te5)100-x (x = 0-3 at.%)
Agx(Ge2Sb2Te5)100-x             Agx(Ge2Sb2Te5)100-x     [50]
Bi-Ge2Sb2Te5
                    [52]
C-Ge2Sb2Te5
        C-Ge2Sb2Te5
C-Ge2Sb2Te5
    279 (for C5%); 314 (for C8%); 342 (for C15%)     [27]
Co-Ge2Sb2Te5
                    [52]
Cr-Ge2Sb2Te5
                    [52]
Ge-rich GexSbyTez
Ge-rich GexSbyTez       Ge-rich GeSbTe     Ge-rich GexSbyTez     [39, 41]
N-Ge2Sb2Te5
N-Ge2Sb2Te5
            250 (for 15 at.% N)
N-Ge2Sb2Te5
---------
N-Ge2Sb2Te5
    [28, 29]
(Si+N)-Ge2Sb2Te5
(Si+N)-Ge2Sb2Te5       (Si+N)-Ge2Sb2Te5         Crystallization inhibition of GST by SiNx; average grain sizes of pure, Si-, and (Si+N)-GST after 400 °C annealing for 10 min are 20.4, 10.7, and 5.6 nm, respectively. [55, 56]
N-Ge5Sb75Te20
Ge5Sb75Te20                 Crystallization time:
N-Ge5Sb75Te20
[51]
Fe-Ge2Sb2Te5
Fe-Ge2Sb2Te5         a = 0.4205; c = 1.732       UV-visible reflectance spectra:
Fe-Ge2Sb2Te5
[38]
In-Ge2Sb2Te5
                    [52]
O-Ge2Sb2Te5
O-Ge2Sb2Te5                   [45]
Pb-Ge2Sb2Te5
Pb-Ge2Sb2Te5             Increases with higher Pb at%: 124 - 138     [52, 53]
Sb-Ge2Sb2Te5
                  Conductive Sb filaments with electrical current are formed due to excess Sb atoms. [58]
Sn-Ge2Sb2Te5
Sn-Ge2Sb2Te5                   [49]
Ti-Ge2Sb2Te5
                    [52]
GexSb2Te3+x
                  An alternation in c'-axis of one repeat unit of Sb2Te3 and a block consisting of 2x layers GeTe [6]
Amorphous GeSb2Te4
      Asymmetrical tetrahedral structure:
Asymmetrical tetrahedral structure
    0.0304     Bond length: Ge(Sb)-Te = 0.278±0.004 nm; Te-Te = 0.410±0.004 nm (shorter than in the corrsponding crystalline phases). Bond angle: Te-Ge-Te = 95°. [17]
Metastable cubic GeSb2Te4
            0.0316     Bond length: Ge(Sb)-Te = 0.295±0.004 nm; Te-Te = 0.417±0.004 nm. Bond angle: Te-Ge-Te = 90°. [17]
Stable hexagonal  GeSb2Te4
  GeSb2Te4    
GeSb2Te4 resistance
a' = 0.425; c' = 4.10 0331     The periodicity is 21:
-Te-Ge-Te-Sb-Te-vac-Te-Sb-Te-Ge-Te-Sb-Te-vac-Te-Sb-Te-Ge-Te-Sb-Te-vac-Te-Sb-. Very high static dielectric constant 98.
[6 - 8, 14, 15, 17]
O-GeSb2Te4
O-GeSb2Te4                 For O < 10 at.%, Te, Sb and most of Ge are in metallic state, and free O is located at tetrahedral interstitial sites and acts as nucleation center; Higher O at.%, segregated Te is in metallic state; Higher T (573 K) promoted Te phase. [48]
GeSb4Te7
        3.47 X 10-4 Ω•m;        

Thermal conductivity 0.49 W•m-1•K-1, specific heat 193.55 J•kg-1•K-1, density 5685 kg•m-3 Young's modulus 37.8 GPa, thermal expansion coefficient 17.913 × 10-6 K-1, Poisson's ratio 0.3.

[32 - 34]
Ge3Sb2Te6
  Ge3Sb2Te6 Ge3Sb2Te6 HRTEM     a' = 0.425; c' = 6.26         [6 - 8]
Ge15Sb70Te15
Ge15Sb70Te15                 Space group R-3m; [12]
Diamond-type Ge
          a = 0.565735 at 20 °C       Fd-3m [10, 11]
Ge15Sb85
     
Ge15Sb85
            [13]
(O+N)-Ge21Sb26Te53
              (O+N)-Ge21Sb26Te53     [57]
InSb
              168 490    
InSbTe
              200 500-600    
In3SbTe2
     
In3SbTe2
    0.0351       [13, 21]
In10GexSb52-xSn23Te15
              192.6 (for x = 2); 201.5 (for x = 5); 208.6 (for x = 7); 213.1 (for x = 9).     [25]
InSe
              200 & 650 890    
Ga3Sb8Te
              227 567.5   [23]
Si3.9Sb45.6Te50.5
              180 550   [24]
Si-Ga2TeSb7
Si-Ga2TeSb7             260–361 (increase with
increasing Si-composition)
    [26]
Te81Ge15Sb2S2
                380    
TeGa2Sb14
TeGa2Sb14
            232 584 Activation energy of crystallization 3.66 eV; [22]

Note that for GexSbyTez, a higher vacancy concentration results in a higher crystallization speed. [31] The elemental concentrations of GexSbyTez are normally quantified by using EDS measurements with Ge K, Sb L, and Te L lines. [46]

Application of GST alloys for optical storage

Figure 3161a. Application of GST alloys for optical storage. [60]

Figure 3161b shows the dependence of crystallized fraction of amorphous Ge2Sb2Te5 (GST) on the annealing time and temperature.

Dependence of amorphous Ge2Sb2Te5 (GST) on the annealing time and temperature

Figure 3161b. Dependence of crystallized fraction of amorphous Ge2Sb2Te5 (GST) on the annealing time and temperature.

 

 

 

[1] Structure Reports, edited by W. P. Pearson (International Union of Crystallography, New York, 1953), Vol. 17, p. 44.
[2] J. Goldak, C. S. Barrett, D. Innes, and W. Youdelis, J. Chem. Phys. 44, 3323 (1966).
[3] R. W. G. Wyckoff, Crystal Structures, 2nd ed. (Interscience, New York, 1963), Vol. 2, pp. 29–31.
[4] I. I. Petrov, R. M. Imamov, and Z. G. Pinsker, Sov. Phys. Crystallogr. 13, 339 (1968).
[5] N. Yamada and T. Matsunaga, J. Appl. Phys. 88, 7020 (2000).
[6] B. J. Kooi and J. Th. M. De Hosson, Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x („x = 1, 2, 3…) phase change material, J. Appl. Phys.92 (7), 3584 (2002).
[7] V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, J. Appl. Phys. 86, 5879 (1999).
[8] I. I. Petrov, R. M. Imamov, and Z. G. Pinsker, Sov. Phys. Crystallogr. 13, 339 (1968).
[9] Fei Yang, Ling Xu, Rui Zhang, Lei Geng, Liang Tong, Jun Xu, Weining Su, Yao Yu, Zhongyuan Ma, Kunji Chen, Direct observation of phase transition of GeSbTe thin films by Atomic Force Microscope, Applied Surface Science 258 (2012) 9751– 9755.
[10] Edited by T. Hahn: International Tables for Crystallography, Vol. A (Kluwer, Dordrecht, 1995).
[11] R W. G. Wyckoff: Crystal Structures, Vol. 1 (Interscience, New York, 1963).
[12] Toshiyuki Matsunaga, Rie Kojima, Noboru Yamada, Kouichi Kifune, Yoshiki Kubota, Sinji Kohara, Structural investigation of Sb-based phase-change materials.
[13] Wei Zhang, Ab Initio Investigation of Phase Change Materials: Structural, Electronic and Kinetic properties, Master thesis, 2014.
[14] Siegrist T, Jost P, Volker H, Woda M, Merkelbach P, Schlockermann C, et al. Disorder-induced localization in crystalline phase-change materials. Nature materials 2011, 10(3): 202-208.
[15] Lencer D. Design Rules, Local Structure and Lattice-Dynamics of Phase-Change Materials for Data Storage Applications. PhD thesis, RWTH Aachen 2010.
[16] Dove DB. Short-range order in amorphous GeTe films. Applied Physics Letters 1970, 16(3):138. 
[17] Boyn S. Elektrische und optische Eigenschaften von kristallinen pseudo-binaeren GeSbTe Phasenwechselmaterialien. Bachelor thesis, RWTH Aachen 2009.
[18] Njoroge WK , Woltgens H -W, Wuttig M. Density changes upon crystallization of Ge2Sb2.04Te4.74 films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2002, 20(1): 230.
[19] Anderson TL, Krause HB. Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3-ySey compounds. Acta Crystallogr B 1974 30 1307.
[20] Njoroge W. Phase Change Optical Recording - Preparation and X-ray Characterization of GeSbTe and AgInSbTe film. PhD thesis, RWTH Aachen 2001.
[21] Zalden P. Phase-Change Materials Structure, vibrational states and thermodynamics of crystallization. PhD thesis, RWTH Aachen 2012.
[22] Yung-Ching Chu, Chien-Tu Chao, Po-Chin Chang, Shih-Ching Chang, Jong-Ching Wu, and Tsung-Shune Chin, Characteristics of TeGa2Sb14 Thin Films for Phase-Change Memory, IEEE Transactions on Magnetics, 47(3), 637 2011.
[23] C. M. Lee, Y. I. Lin, and T. S. Chin, Crystallization kinetics of amorphous Ga–Sb–Te chalcogenide films, J. Mater. Res, vol. 19, 2929 (2004).
[24] Yuta Saito, Yun Heub Song, Member, IEEE, Jung Min Lee, Yuji Sutou, and Junichi Koike, Multiresistance Characteristics of PCRAM With Ge1Cu2Te3 and Ge2Sb2Te5 Films, IEEE Electron Device Letters, 33 (10), 1399 (2012).
[25] Sin Liang Ou, Kuo Sheng Kao, Chao Te Lee, Tsung Shine Ko, Han Feng Chang, and Huan Hsien Yeh, Recording Characteristics and Crystallization Behavior of InGeSbSnTe Phase Change Thin Films, IEEE Transactions on Magnetics, 50(7), 3501604, 2014.
[26] Alfred Tung Hua Chuang, Yi-Chou Chen, Yung-Ching Chu, Po-Chin Chang, Kin-Fu Kao, Chih-Chung Chang, Kuang-Yeu Hsieh, Tsung-Shune Chin, Chih-Yuan Lu, Temperature Robust Phase Change Memory using Quaternary Material System based on Ga2TeSb7, DOI: 10.1109/IMW.2011.5873240, 2011.
[27] Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar, P. Noé, D. Blachier, V. Sousa, L. Perniola, JF. Nodin, A. Persico, R. Kies, S. Maitrejean, A. Roule, E. Henaff, M. Tessaire, P. Zuliani, R. Annunziata, G. Pananakakis, G. Reimbold, B. De Salvo, Lowering the reset current and power consumption of Phase-Change Memories with carbon-doped Ge2Sb2Te5, DOI:10.1109/IMW.2012.6213683 (2012).
[28] Chun Chia Tan, Rong Zhao, Luping Shi, Tow Chong Chong, James A. Bain, T. E. Schlesinger, Jonathan A. Malen, Wee Liat Ong, Thermal Conductivity Measurements of Nitrogen doped Ge2Sb2Te5, DOI:10.1109/NVMTS.2011.6137080, 2011 11th Annual Non-Volatile Memory Technology Symposium (NVMTS), 2011.
[29] Hun Seo et al., Investigation of crystallization behavior of sputter-deposited nitrogen-doped amorphous Ge2Sb2Te5 thin films, Jpn. J. Appl. Phys, 39, 745, 2000.
[30] Huai-Yu Cheng, Chao-An Jong, Chain-Ming Lee, and Tsung-Shune Chin, Wet-Etching Characteristics of Ge2Sb2Te5 Thin Films for Phase-Change Memory, IEEE Transactions on Magnetics, 41(2) 1031, 2005.
[31] Wuttig, M., et. al., “The role of vacancies and local distortions in the design of new phase-change materials”, Nature Materials, Vol 6, February 2007, p. 122.
[32] S. Shin, H. K. Kim, J. Song, D. J. Choi, and H. H. Cho, “Phase-dependent thermal conductivity of Ge1Sb4Te7 and N:Ge1Sb4Te7 for phase change memory applications,” J. Appl. Phys., vol. 107, no. 3, pp. 033518-1, Feb. 2010.
[33] H. K. Kim, S. Y. Lee, D. J. Choi, S. Shin, H. H. Cho, and J. S. Roh, “Effects of nitrogen doping and working pressure on the crystallization of Ge1Sb4Te7 thin films for PRAM applications,” J. Korean Phys. Soc., vol. 55, no. 5, pp. 1896–1900, Nov. 2009.
[34] S. S. Kim, S. M. Jeong, K. H. Lee, Y. K. Park, Y. T. Kim, J. T. Kong, and H. L. Lee, “Simulation for reset operation of Ge2Sb2Te5 phasechange random access memory,” Jpn. J. Appl. Phys. 2, Lett., vol. 44, no. 8, pp. 5943–5948, Aug. 2005.
[35] H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B.-K. Cheong, “Thermal conductivity of phase-change material Ge2Sb2Te5,” Appl. Phys. Lett., vol. 89, no. 15, pp. 151904-1–151904-3, Oct. 2006.
[36] S. M. Sadeghipour, L. Pileggi, and M. Asheghi, “Phase change random access memory, thermal analysis,” in Proc. ITHERM, 2006, pp. 660–665.
[37] I.-M. Park, J.-K. Jung, S.-O. Ryu, K.-J. Choi, B.-G. Yu, Y.-B. Park, S. M. Han, and Y.-C. Joo, “Thermomechanical properties and mechanical stresses of Ge2Sb2Te5 films in phase-change random access memory,” Thin Solid Films, vol. 517, no. 2, pp. 848–852, Nov. 2008.
[38] J. C. Huang, W. D. Song, L. P. Shi, R. Zhao, T. C. Chong, J. A. Bain, T. E. Schlesinger, Crystallinity and its Influence on Physical and Magnetic Properties in Phase Change Magnetic Materials, 2011 11th Annual Non-Volatile Memory Technology Symposium (NVMTS), DOI:10.1109/NVMTS.2011.6137109, (2011).
[39] Nicola Ciocchini, Elisabetta Palumbo, Massimo Borghi, Paola Zuliani, Roberto Annunziata, Daniele Ielmini, Modeling Resistance Instabilities of Set and Reset States in Phase Change Memory with Ge-Rich GeSbTe, IEEE Transactions on Electron Devices, 61(6) 2136 (2014).
[40] Young-Chang Joo, Tae-Youl Yang, Ju-Young Cho, and Yong-Jin Park, Electromigration in Molten-phase Ge2Sb2Te5 and Effects of Doping on Atomic Migration Rate, Journal of the Korean Ceramic Society, 49(1), pp. 43~47, 2012.
[41] Paola Zuliani, Enrico Varesi, Elisabetta Palumbo, Massimo Borghi, Innocenzo Tortorelli, Davide Erbetta, Giovanna Dalla Libera, Nicola Pessina, Anna Gandolfo, Carlo Prelini, Leonardo Ravazzi, and Roberto Annunziata, Overcoming Temperature Limitations in Phase Change Memories with Optimized GexSbyTez, IEEE Transactions on Electron Devices, 60(12), 4020 (2013).
[42] Kadir Cil, Faruk Dirisaglik, Lhacene Adnane, Maren Wennberg, Adrienne King, Azer Faraclas, Mustafa B. Akbulut,  Yu Zhu, Chung Lam, Ali Gokirmak, and Helena Silva, Electrical Resistivity of Liquid Ge2Sb2Te5 Based on Thin-Film and Nanoscale Device Measurements, IEEE Transactions on Electron Devices, 60(1), 433 (2013).
[43] Mattia Boniardi, Andrea Redaelli, Innocenzo Tortorelli, Simone Lavizzari, Agostino Pirovano, Fabio Pellizzer, Enrico Varesi, Davide Erbetta, Camillo Bresolin, Alberto Modelli and Roberto Bez, Electrical and Thermal Behavior of Tellurium poor GeSbTe compounds for Phase Change Memory, 2012 4th IEEE International Memory Workshop (IMW), DOI:10.1109/IMW.2012.6213679, (2012).
[44] Tae-Youl Yang, Ju-Young Cho, Yong-Jin Park, and Young-Chang Joo, Effects of dopings on the electric-field-induced
atomic migration and void formation in Ge2Sb2Te5, 2011 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), DOI:10.1109/IPFA.2011.5992717, (2011).
[45] Shin Kikuchi, Dong Young Oh, Isao Kimura, Yutaka Nishioka, Masahisa Ueda, Mitsuhiro Endo, Yutaka Kokaze and Koukou Suu, Preparation of Oxygen-doped and Nitrogen-doped Ge-Sb-Te System Thin Film for Phase Change Random Access Memory by RF Magnetron Sputtering, 7th Annual Non-Volatile Memory Technology Symposium, NVMTS, DOI:10.1109/NVMT.2006.378882, 2006.
[46] Kai-Liang Zhang, Qi-Bin Liu, Zhi-Tang Song, Song-Lin Feng, Bomy Chen, Study on Chemical Mechanical Polishing of GeSbTe for Chalcogenide Phase Change Memory, ICSICT '06. 8th International Conference on Solid-State and Integrated Circuit Technology, DOI:10.1109/ICSICT.2006.306518, 2006.
[47] Kin-Fu Kao, Huai-Yu Cheng, Chao-An Jong, Chi-Jui Lan, and Tsung-Shune Chin, Tungsten Added Sb80Te20 for Phase-Change RAM, IEEE Transactions on Magnetics, 43(2), 930, 2007.
[48] E. Morales-Sánchez, J. González-Hernández, P. Herrera-Fierro , B. Chao, Yu. Kovalenko, E. Prokhorov, Influence of oxygen on the crystallization process in Ge:Sb:Te:O films, 2006 3rd International Conference on Electrical and Electronics Engineering, DOI:10.1109/ICEEE.2006.251847, (2006).
[49] Y. C. Chen, C. T. Chen, J. Y. Yu, C.Y. Lee, C. F. Chen, S. L. Lung, and Rich Liu, 180nm Sn-Doped GezSbtTes Chalcogenide Phasechange Memory Device for Low Power, High Speed Embedded Memory for SoC Applications, DOI:10.1109/CICC.2003.1249426, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003.
[50] C. T. Lie, P. C. Kuo, T. H. Wu, and P. W. Chen, Ge2Sb2Te5 Thin Film Doped with Silver, International Symposium on Optical Memory and Optical Data Storage Topical Meeting, DOI:10.1109/OMODS.2002.1028619, 2002.
[51] Byung-ki Cheong, In Ho Kim, Hanju Jung, Taek Sung Lee, Jeung-hyun Jeong, Dae-Hwan Kang, Won Mok Kim, and Jae-Geun Ha, Effects of Nitrogen Addition on the Properties of Ge-Doped SbTe Phase Change Memory Material, Electronic Materials Letters, Vol. 2, No. 1 (2006), pp. 43-48.
[52] J. Kumar, P. Kumar, M. Ahmad, R. Chander, R. Thangaraj, and T.S. Sathiaraj, Phase transformation in Pb:GeSbTe chalcogenide films, DOI: 10.1051/epjap:2008165, Eur. Phys. J. Appl. Phys. 44, 117–123 (2008).
[53] J. Kumar, M. Ahmad, R. Chander, R. Thangaraj, and T.S. Sathiaraj, Phase segregation in Pb:GeSbTe chalcogenide system, DOI: 10.1051/epjap:2007173, Eur. Phys. J. Appl. Phys. 41, 13–18 (2008).
[54] Baowei QIAO,Yunfeng LAI,Jie FENG,Yun LING,Yinyin LIN,Ting'ao TANG,Bingchu CAI,Bomy CHEN, Bomy,CHEN, study of Ge2Sb2Te5 film for nonvolatile memory medium, J. Mater. Sci. Technol. 21(1) 95, 2005.
[55] Cai Yan-Fei, Zhou Peng, Lin Yin-Yin, Tang Ting-Ao, Chen Liang-Yao, Li Jing, Qiao Bao-Wei, Lai Yun-Feng, Feng Jie, Cai Bing-Chu and Chen Bomy, Nitrogen and Silicon Co-Doping of Ge2Sb2Te5 Thin Films for Improving Phase Change Memory Performance, Chinese Phys. Lett. 24 781 doi:10.1088/0256-307X/24/3/053, 2007.
[56] Lai Y F et al. J. Electron. Mater. 34, 176, (2005).
[57] D. Dimitrov, H.-P.D. Shieh, The influence of oxygen and nitrogen doping on GeSbTe phase-change optical recording media properties, Materials Science and Engineering B107 (2004) 107–112.
[58] Ramanathaswamy Pandian, Bart J. Kooi, Jasper L. M. Oosthoek, Pim van den Dool, George Palasantzas, and Andrew Pauza,  Polarity-dependent resistance switching in GeSbTe phase-change thin films: The importance of excess Sb in filament formation, Applied Physics Letters 95, 252109 (2009).
[59] Vorgelegt Von, Quantitative TEM analysis of crystalline and amorphous GeTe-based chalcogenides, M.Sc. thesis, (2009).
[60] M. Wuttig, Nature Materials 6 (2007) 824-832.
[61] I. Friedrich, W. K. Njoroge, P. Franz, and M. Wuttig, J.Appl. Phys., Vol.87, No.9 (2000) 4130-4134.
[62] W. Welnic et al., Nature Materials 5 (2006) 56-62.
[63] Giovanni Betti Beneventi, Characterization and modeling of phase-change memories, thesis, 2012.

 

 

 

=================================================================================

The book author (Yougui Liao) welcomes your comments, suggestions, and corrections, please click here for submission. If you let book author know once you have cited this book, the brief information of your publication will appear on the “Times Cited” page.