Electron microscopy
 
Analysis Techniques for Ferroelectric Materials
- Practical Electron Microscopy and Database -
- An Online Book -
Microanalysis | EM Book                                                                                   http://www.globalsino.com/EM/        

=================================================================================

 

Table 1773. Techniques that is used to analyze ferroelectric materials.

Techniques Obtainable information Disadvantage Remark Reference

Atomic force microscopy

Domain structure Lack of quantitative information on orientation, strain & mesoscale dynamics within domains   [5, 6]
EBSD Domain structure Lack of quantitative information on orientation, strain & mesoscale dynamics within domains   [4]
Neutron diffraction   Cannot apply to nanostructures due to its spatial resolution limitation    
Optical microscopy Domain structure Lack of quantitative information on orientation, strain & mesoscale dynamics within domains   [5, 6]
Synchrotron-based polychromatic Scanning XRay Microdiffraction (μSXRD) Non-destructive, great penetration depth (> 20μm), strain resolution (0.02%), crystallite orientation precision (0.01°) Cannot apply to nanostructures due to its spatial resolution limitation   [7]
XRD Long range average Cannot apply to nanostructures due to its spatial resolution limitation    
CBED in CTEM mode     Cannot apply to nanostructures  
CBED in STEM mode Two-dimensional (2D) distribution of small atomic displacements  (~10 pm)   The sensitivity to displacement is greater than other techniques (e.g. DPC) [9]
TEM Domain structure Lack of quantitative information on orientation, strain & mesoscale dynamics within domains   [1,2]
Differential phase-contrast (DPC) imaging based on STEM Polarizations of domains in atomic resolution     [8]
White beam topography Domain structure Lack of quantitative information on orientation, strain & mesoscale dynamics within domains   [3]
XAFS/EXAFS Local order, local spatial and electronic structure, local distortions of crystal lattice      
Capacitance measurements     With Keithley 3330 LCZ meter at 0.1, 1, 10, and
100 kHz by heating to 150°C with 5°C/min heating rate and cooling back to room temperature
 

 

 

 

[1] X. Tan, J. K. Shang, Journal of Applied Physics, 96, 5 (2004).
[2] K. A. Schönau, M. Knapp, H. Kungl, M. J. Hoffmann, H. Fuess, Physical Review B, 76, 14 (2007).
[3] X. R. Huang, S. S. Jiang, W. J. Liu, X. S. Wu, D. Feng, Z. G. Wang, V. Han, J. Y. Wang, J. Appl. Cryst. 29, 371 (1996).
[4] F. Ernst, M. L. Mulvihill, O. Kienzle, M. Ruhle, J. Am. Ceram. Soc., 84, 8, 1885 (2001).
[5] S. Balakumar, J. B. Xu, J. X. Ma, S. Ganesamoorthy, I. H. Wilson, Jpn. J. Appl. Phys., 36, 5566, (1997).
[6] S. V. Kalinin, D. A. Bonnell, Appl. Phys. Lett. 78, 1116 (2001).
[7] J-S Chung, G. E. Ice, Journal of Applied Physics, 86, 9, 5249 (1999).
[8] N. Shibata, S. D. Findlay, Y. Kohno, H. Sawada, Y. Kondo, and Y. Ikuhara, Nat. Phys. 8, 611–615 (2012).
[9] Kenji Tsuda, Akira Yasuhara, and Michiyoshi Tanaka, Two-dimensional mapping of polarizations of rhombohedral nanostructures in the tetragonal phase of BaTiO3 by the combined use of the scanning transmission electron microscopy and convergent-beam electron diffraction methods, Applied Physics Letters, 103, 082908 (2013).

 

=================================================================================