Table of Characteristics of Some Specific Ferroelectric Materials
- Practical Electron Microscopy and Database -
- An Online Book -


https://www.globalsino.com/EM/  


This book (Practical Electron Microscopy and Database) is a reference for TEM and SEM students, operators, engineers, technicians, managers, and researchers.

=================================================================================

The properties of ferroelectric materials are extremely sensitive to the nature of the surface, defect structure (e.g. grain size, grain boundaries and dislocations), sample preparation (e.g. deposition chemistry, temperature and pressure) [4, 5], sample geometry (e.g. thickness of the ferroelectric films) [6], the residual misfit strain, domain evolution mechanism based on train energy accumulation, thermal expansion mismatch between the ferroelectric film and the electrode, selection of bottom electrode material and its orientation [7]. Table 1805 lists the main characteristics of some bulk ferroelectric materials.

Table 1805. Characteristics of bulk ferroelectric materials.

Material Condition Space group Structure type Lattice parameter (Å) & unit cell volume (Å3) Ferroelectric polarization ( μC/cm2) Coer-cive field (EC, kV/cm) Melting point (°C) Curie temperature (°C) Crystallization temperature (°C) Remanent polarization Fatigue Imprint Remarks Reference
BaCoF4         8                  
BaTiO3 5 ~ 120 °C P4mm (99) Tetragonal perovskite ABO3 a = b = 3.99, c=4.04 20 - 26     120            
BaTiO3 -90 ~ 5 °C Amm2 (38) Orthorhombic         5            
BaTiO3 < - 90 °C R3m (160) Rhombohedral         -90            
BiScO3 - PbTiO3                         Pb is toxic & volatile  
BiScO3 - (K0.475Na0.475Li0.05) (Nb0.95Sb0.05)O3                            
xBiScO3 - (1-х)BaTiO3 (0.00 ≤ x ≤ 0.03)                            
(Bi,La)4Ti3O12 (BLT)         15 80     700       Most important material for FeRAMs  
C(NH2)3Al(SO4)2•6H2O   P31m (157)     3.5                  
CaBi2Ta2O9 (CBT)                     Good fatigue up to 1011 cycles at 5V     [2]
(K0.5Bi0.5)TiO3 - BiScO3 - PbTiO3                         Pb is toxic & volatile  
KH2PO4   Fdd2 (43) Orthorhombic   5     -150            
LiNbO3       a = 5.15, c = 13.864 71   1255 1140            
LiTaO3       a = 5.154, c = 13.781 50-60   1650 605~665            
Mg3B7O13Cl         0.05     265            
NaKC4H4O6•4H2O   P21 (4) Monoclinic   0.25     -18            
NaKC4H4O6•4H2O               24            
Nb-doped SBT (SrBi2(Ta,Nb)2O9)
                          [2]
(NH2CH2COOH)3•H2SO4
        2.8     49            
(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT)                         Applications: transform technologies of medical imaging, actuation, and sensors [8]
PbTiO3 ~ 490 °C P4mm (99) Tetragonal perovskite ABO3 a = b = 3.904, c=4.152 75 60   490         Most important material for FeRAMs; A shift of oxygen & titanium ions in the same direction along the c axis  
PbZrO3     Tetragonal perovskite ABO3   25 60     600       Most important material for FeRAMs  
PbZrxTi1−xO3 (PZT)                 Low Large Large fatigue with Pt electrodes; small with oxide electrodes (IrO2, RuO2, SrRuO3, (La0.5Sr0.5)CoO3) Large imprint with Pt electrodes; small with oxide electrodes (IrO2, RuO2, & SrRuO3)   [1, 2]
SrBi2Ta2O9 (SBT)     Orthorhombic a = 5.52237 Å, b = 5.52408 Å,
& c = 25.02641 Å
10 40     High, 750  

Fatigue-free up to 1013 switching cycles

  Most important material for FeRAMs, but Can crystallize to an undesirable phase (e.g. fluoride phase) during crystallization process [3]
Tb2(MoO4)3         0.2     163            

 

[1] C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M. C. Scott, J. F. Scott: Nature 374, 627 (1995).
[2] Ferroelectric Random Access Memories: Fundamentals and Applications, edited by Hiroshi Ishiwara, Masanori Okuyama, Yoshihiro Arimoto, 2004.
[3] Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, F. Izumi: Appl. Phys. Lett. 74, 1904 (1999).
[4] 15 J-H Chen, B-H Hwang, T-C Hsu, H-Y Lu, Materials Chemistry and Physics 91, 67 (2005).
[5] W. Chang, A. H. King, K. J. Bowman, Journal of Materials Research, 22, 2845 (2007).
[6] M. E. Lines, A. M. Glass, “Principles and applications of ferroelectrics and related materials”, (Oxford, Clarendon Press, 1977).
[7] K. S. Lee, J. H. Choi, J. Y. Lee, and S. Baik, J. Appl. Phys. 90, 4095 (2001).
[8] Kyou-Hyun Kim, Local Symmetry and Polarization in Relaxor-Based Ferroelectric Crystals, thesis, 2013.

 

 

 

=================================================================================

The book author (Yougui Liao) welcomes your comments, suggestions, and corrections, please click here for submission. If you let book author know once you have cited this book, the brief information of your publication will appear on the “Times Cited” page.