Comparison between Different Memories
- Practical Electron Microscopy and Database -
- An Online Book -


https://www.globalsino.com/EM/  


This book (Practical Electron Microscopy and Database) is a reference for TEM and SEM students, operators, engineers, technicians, managers, and researchers.

=================================================================================

Table 3341 presents the comparison between different baseline and prototypic memories.

Table 3341. Comparison between different memories. The best performances in different ages are labeled in green.

Baseline technologies

Prototypical technologies

Emerging
DRAM SRAM Floating gate HDD Trapping charge FeRAM MRAM RRAM PCM /PRAM /PCRAM STT-MRAM Emerging ferroelectric Redox memory Mott memory Macro-molecular memory Molecular memory Nano-mechanical memory Graphene NVM Graphene switch
device

Stand-alone

Embedded NOR NAND

Storage mechanism

Charge on a capacitor Inter-locked state of logic gates Charge trapping
induced floating gate potential increase
Charge trapped in gate insulator Remnant polarization on a ferroelectric capacitor Magnetization of ferromagnetic layer: Vary the electric resistance of the
resistor by manipulating the
electron spin
Under debate Reversibly changing amorphous and crystalline phases           Charge trapping
induced gate
potential increase
Vary the electric
resistance of the
graphene channel
by oxidizing the
channel graphene
1T1C 6T MOSFET with a
charge trapping
stack (1T)
1T 1T1C A switchable
resistor and a (or two)
transistor(s): 1(2)T1R
A Ti/TiO2 /Ti resistor and a selector (1D1R) A chalcogenide resistor and a selector (1D1R) or 1T1R           Graphene FET
with a charge
trapping stack
Graphene FET

Feature size (F, nm)

2009 50 65 65 90 90 N/A 50 180 130 N/A 65              
2024 0 20 10 10 18 10 65 16 0              

Cell area

2009 6F2 (12-30)F2 140F2 10F2 5F2 (2/3)F2 (6-7)F2 22F2 45F2 6F2 16F2              
2024 4F2 (12-30)F2 140F2 10F2 4F2 - 5F2 (9-10)F2 12F2 8F2 - 16F2 4F2 4F2 - 6F2              
Scalability
Bad Best Good Good Best Unknown Unknown Best Bad    
Scalability limit
  Capacitor 6T (4T possible) Tunnel oxide/HV     Polarized capacitor Current density   Litho-graphy limit             Litho-graphy limit    
MLC
  No No Best Best   Best Bad/no   Good Best Bad Bad Best Unknown Good Bad Bad    
3D integration
  No No Possible     Bad N/A   Best Good Bad Good Unknown Best Bad Bad    
Density
~8 Gb/chip N/A N/A 64 Gb/chip 400 Gb/in2 N/A 128 Mb/chip 32 Mb/chip 64 Kb/chip 512 Mb/chip              

Read time

2009 <10 nS 1 nS 0.3 nS 10 nS 50 nS ~8.5 ms 14 nS 45 nS 20 nS ~20 nS - µS 60 nS              
2024 <10 nS 0.2 nS 70 nS 1.5 nS 8 - 60 nS 2.5 nS <20 nS <0.5 nS <60 nS              

W/E time

2009 <10 nS 0.5 nS 0.3 nS 1 µS /10 mS 1/0.1 mS ~9.5 mS 20 µS/20 mS 10 nS 20 nS ~ 10 - 80 nS 50/120 nS              
2024 <10 nS 0.15 nS 70 pS 1 µS /10 mS 1 mS/ 0.1 mS ~10 µS/ 10 mS 1 nS <0.5 nS <50 nS           10ms/30ms 80μs/80μs

Retention time

2009 64 mS 64 mS [A] >10 y >10 y N/A >10 y >10 y >10 y >10 y (Good) >10 y Best Best Best Good Bad   Bad    
2024 64 mS 64 mS [A] >10 y >10 y (Good) >10 y >10 y >10 y (Very good) >10 y >10 y (Very good)           Good ~2 days

Write cycles (Endurance)

2009 >1016 >1016 >1016 >105 104 - 105 105 1014 >1016 ~106 - 1012 109              
2024 >1016 >1016 >1016 >105 >105 106 >1016 >1016 1012 - 1015             ≥ 8

Write operating voltage (V)

2009 2.5 2.5 1 12 15 7-9 0.9-3.3 1.5 3              
2009 1.5 1.5 0.7 12 15 4-6 0.7-1 <1.5 <3              

Read operating voltage (V)

2009 1.8 1.8 1 2 2 1.6 0.9-3.3 1.5 3              
2024 1.5 1.5 0.7 1 1 1 0.7-1 <1.8 <3              

Write energy (J/bit)

2009 5x10-15 5x10-15 7x10-16 >10-14 >10-14 10-13 3x10-14 1.5x10-10 ~2 pJ 6x10-12              
2024 2x10-15 2x10-15 2x10-17 >10-15 >10-15 >10-15 7x10-15 1.5x10-13 <2x10-13              
Volatility
  Yes Yes Yes   Not     Not Not   Not                  
Program power
          Low       Medium Medium Low               High High
Fabrication cost
                Good     Best Good Good Good Unknown Best Unknown Bad    
Comment
                Destructive read-out Spin-polarized write has a potential to lower write current density and energy                      
Reference [1, 2] [1, 2] [1] [1] [1] [1] [1]   [1 - 3] [1, 3] [1]   [1] [1] [1] [4] [5]

* [A] SRAM memory state is preserved so long as the voltage is applied.

 

 

 

[1] The International Technology Roadmap for Semiconductors: Emerging research devices: (2009).
[2] Gang Zhang, Tian-Zi Shen, Hua-Min Li, Dae-Yeong Lee, Chang-Ho Ra, and Won Jong Yoo, Electrically Switchable Graphene Photo-Sensor using Phase-Change Gate Filter for Non-Volatile Data Storage Application with High-Speed Data Writing and Access, 2011 IEEE International Electron Devices Meeting (IEDM), DOI:10.1109/IEDM.2011.6131476, (2011).
[3] S. Lai et al., “OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications,” in IEDM Tech. Dig., 2001, s36p5, pp. 803-806.
[4] S. M. Kim et al., “Non-volatile graphene channel memory (NVGM) for flexible electronics and 3D multi-stack ultra-high -density data storages,” in Symp. VLSI Tech. Dig., 2011, t6b2, pp. 118-119.
[5] T. Echtermeyer et al., “Nonvolatile switching in graphene field-effect devices,” IEEE Electron Device Letts., vol. 29, no. 8, pp. 952-954, 2008.

 

 

=================================================================================

The book author (Yougui Liao) welcomes your comments, suggestions, and corrections, please click here for submission. If you let book author know once you have cited this book, the brief information of your publication will appear on the “Times Cited” page.