Broadening of EELS Zero-Loss Peak due to Phonon Scattering
- Practical Electron Microscopy and Database -
- An Online Book -

http://www.globalsino.com/EM/  



 

This book (Practical Electron Microscopy and Database) is a reference for TEM and SEM students, operators, engineers, technicians, managers, and researchers.

 

=================================================================================

In EM measurements, electrons also scatter inelastically with phonons. These energy losses are of the order of a few tens of millielectronvolts (meV) and can therefore not be detected with transmission EELS measurement in an electron microscope. That is, such energy losses induced by crystal vibrations (called phonons) are indistinguishable from elastically scattered electrons. Furthermore, these quasi-elastic scattering processes broaden the zero-loss peak of EELS on the high-energy side.

Table 4347 shows that electrons interact with 1 electron, many electrons, 1 nucleus, and many nuclei in solids.

Table 4347. Effects of interactions of electrons in solids.
  Interaction with electron(s) Interaction with nucleus/nuclei
  1 electron Many electrons 1 nucleus Many nuclei
Scattering type Inelastic Inelastic Quasi-elastic Elastic Inelastic
Scattering effect Electron Compton effect; electron excitation (from 50 eV to a few keV: EDS and EELS) Plasmon excitation (< 50 eV, ~100 nm TEM specimen); Cerenkov effect Rutherford scattering; phonon scattering (< 1 eV, heat) Bragg scattering Bremsstrahlung

In EM systems, the development of energy-filtered imaging attachments [1 - 5] has allowed removing the intensity from electrons scattered inelastically by any mechanism other than phonon scattering.

 

 

[1] T. Honda, T. Tomita, T. Kaneyama, Y. Ishida, Ultramicroscopy 54 (2–4) (1994) 132–144.
[2] O.L. Krivanek, A.J. Gubbens, N. Dellby, C.E. Meyer, Microsc. Microanal. Microstruct. 3 (1992) 187–199.
[3] K. Tsuno, J. Electron Microsc. 48 (6) (1999) 801–820.
[4] K. Tsuno, T. Kaneyama, T. Honda, Y. Ishida, Nucl. Instrum. Methods A 427 (1–2) (1999) 187–196.
[5] M. Tanada, K. Tsuda, M. Terauchi, K. Tsuno, T. Kaneyama, T. Honda, Y. Ishida, J. Microsc. 194 (1999) 219–227.

 

 

=================================================================================

The book author (Yougui Liao) welcomes your comments, suggestions, and corrections, please click here for submission. If you let book author know once you have cited this book, the brief information of your publication will appear on the “Times Cited” page.