Chapter/Index: Introduction | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Appendix
HRTEM (high resolution transmission electron microscopy) can be used to not only characterize atomic structures of interfaces and surfaces of polycrystalline materials but also incorporate with simulation methods to evaluate, for instance, the energy of atoms at surfaces, interfaces, and bulk. Radetic et al. [1] had studied the atomic structure at the junction of 90° <110> tilt grain boundaries with the free surface in gold (Au) as shown in Figure 4751a. They proposed that at the {110}/{100} facet, (001) planes from one grain meet (011) planes from the other grain edge to edge, and, as their interplanar spacings are in a ratio of , the interface is incommensurate in one direction [2].
In the simulations of Radetic et al., they found a coherent set of atomic positions and proposed
an interpretation of the defect stability from the energy Figure 4751b. Atomistic simulation of relaxation of the (110)/(001) grain boundary at the free surface of Au.
[1] T. Radetic, F. Lanc¸ and U. Dahmen, Chevron Defect at the Intersection of Grain Boundaries with Free Surfaces in Au, 89(8), Phy. Rev. Lett., 085502, (2002).
|