Practical Electron Microscopy and Database

An Online Book, Second Edition by Dr. Yougui Liao (2006)

Practical Electron Microscopy and Database - An Online Book

Chapter/Index: Introduction | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Appendix

Penetration Depth of Energetic Incident Electrons in Materials

A direct consequence of the decrease in beam energy, E0 is the correlated decrease in the penetration depth, R, of primary electrons (PE) interacting with the specimen. The basis of the combined directional elastic and inelastic scatterings along the direction of electron beam path can be described in simple analytical term proposed by Bethe equation in power law of the form[1],

         Bethe equation --------------------------[4795a]

The penetration of incident electrons is determined by the ‘electron stopping power’ of the specimen, which decreases with increasing atomic number (Z). Similar to Equation [4799a], the penetration depth of incident electrons can be given by Kanaya-Okayama Formula [2],

         Kanaya-Okayama Formula --------------------------[4795b]

       R -- Depth Penetration
       A -- Atomic Weight (g/mole)
       n -- A constant
       E0 -- Beam Energy (KV)
       Z -- Atomic number
       ρ -- Density (g/cm)2

n is often chosen to be ~1.35 when the primary beam energy E0 is < 5 keV, and be 1.67 when E0 > 5 keV. Figure 4795a shows log-log plot of the change of R as a function of the beam energy (E0) based on Equation 4795b. The difference of atomic densities between insulator and metals is a main factor inducing the difference of R. On the other hand, Figure 4795b shows the schematic of penetration depth and volume at different beam energies.

Log-log plot of the change of R as a function of the beam energy

Figure 4795a. Log-log plot of the change of R as a function of the beam energy (E0)

schematic of penetration depth and volume at different beam energy

Figure 4795b. The schematic of penetration depth and volume at different beam energies.

Table 4795 gives some examples of penetration depths at some energy levels of incident beams in some elements. Furthermore, Figure 4795c shows the schematic of penetration depth and volume in comparison with escape depth.

schematic of penetration depth and volume in comparison with escape depth.

Figure 4795c. The schematic of penetration depth and volume in comparison with escape depth.

The high energy electrons, typically 100 – 300 keV, in a transmission electron microscope (TEM) can pass completely through a specimen at thicknesses below ~ 1μm. Because of the limit of specimen penetration, the effectively observable thickness increases ~3 to 10 times with voltage increase from 100 keV to 1 MeV in TEM.

Table 4795. Penetration depth of incident beams in EM.
Beam energy
0.5 keV
1 keV
2 keV
5 keV
10 keV
15 keV
30 keV
Angle  
Polymer     100 nm       12 µm
1 H              
2 He              
3 Li              
4 Be              
5 B              
6 C              
7 N              
8 O              
9 F              
10 Ne              
11 Na              
12 Mg              
13 Al
 
400 nm
2.4 µm
14 Si              
15 P              
16 S              
17 Cl              
18 Ar              
19 K              
20 Ca              
21 Sc              
22 Ti              
23 V              
24 Cr              
25 Mn              
26 Fe
35 Å
10 nm
25 nm
160 nm
990 nm
1.8-3.1 µm
27 Co              
28 Ni              
29 Cu
 
150 nm
900 nm
30 Zn              
31 Ga              
32 Ge              
33 As              
34 Se              
35 Br              
36 Kr              
37 Ru              
38 Sr              
39 Y              
40 Zr              
41 Nb              
42 Mo              
43 Tc              
44 Ru
             
45 Rh              
46 Pd              
47 Ag              
48 Cd              
49 In              
50 Sn              
51 Sb              
52 Te              
53 I              
54 Xe              
55 Cs              
56 Ba              
57 La              
58 Ce              
59 Pr              
60 Nd              
61 Pm              
62 Sm              
63 Eu              
64 Gd              
65 Tb              
66 Dy              
67 Ho              

68

Er

             
69
Tm              
70
Yb              
71
Lu              
72
Hf              
73
Ta              
74
W              
75
Re              
76
Os              
77
Ir              
78
Pt              
79
Au
 
88 nm
540 nm
80
Hg              
81
Tl              
82
Pb              
83
Bi              
84
Po              
85
At              
86
Rn              
87
Fr              
88
Ra              
89
Ac              
90
Th              
91 Pa              
92 U              
Reference              

[1] H. Bethe, Handbook of Physics, Springer, Berlin Heidelberg New York, 1933.
[2] K. Kanaya, S. Okayama, J. Phys. D., J. Appl. Phys. 1972, 5, 43.