Electron microscopy
 
Comparison of Data Acquisition Times of Various Techniques
- Practical Electron Microscopy and Database -
- An Online Book -
Microanalysis | EM Book                                                                                   http://www.globalsino.com/EM/        


=================================================================================

 

Table 1262. Comparison of data acquisition times of various techniques.

Technique Sample Example of acquisition time for an image References/notes (e.g. beam current, efficiency of collection optics, probe size, spatial resolution)
Acquisition time per pixel Step size 100 pixels x 100 pixels
Electron source: Field emission
TEM/HRTEM     0.5-1 ┬Ás   5x10-3-1x10-2 s  
HAADF-STEM     0.03-0.5 ms   0.3 - 5 s  
TEM-EELS Plasmon   5 ms 1 nm/pixel 0.83 min  
    7 ms    

Current: 780 pA, size: 0.14 nm (With Cs and C5 correction)

Fe L2,3 (710 eV)   50 s   8.3 min Very noisy signal
    ~0.1-1 s     Current: 10-100 pA, ~10-30% efficiency (No Cs correction)
    0.1-0.2 s     Current: 100-200 pA (With Cs correction)
    2 s     Current: 7 pA, size: 0.12 nm [4]
SEM-EDS   > 20 wt % 0.1-0.25 s 1 nm/pixel 0.28 hours  
TEM-EDS   > 20 wt % 0.1-0.2 s 1 nm/pixel 0.28-0.56 hour Spatial resolution: < 5 nm
  < 10 wt % 0.6 s 1 nm/pixel 1.67 hours  
Electron source: Thermionic sources
STEM           Spatial resolution: Poor
TEM-EDS   > 20 wt % 1 s 1 nm/pixel 8.3 hours Spatial resolution: < 5 nm
  > 20 wt % for light elements 4 s   33.2 hours [2]
Other techniques
WDS     10 ms  



To identify from the presence or absence of an element [5]
    0.1 s     Good signal [5]
CL     20 s at 2 nA     Low detection efficiency [3]
NSIMS at 2.5 pA     0.005 - 0.015 s 47-98 nm/pixel 0.01-0.04 hour [1]
* NSIMS: Nano secondary ion mass spectrometry.
   CL: Cathodoluminescence.
   The times above do not include drift corrections, which typically adds 5-50 minutes, depending on the specific system.

 

 

 

 

 

[1] A.T. Brasier, D. McIlroy, N. McLoughlin, Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier, 2017.
[2] Peter Ingram, John D. Shelburne, Victor L. Roggli and Ann LeFurgey, Biomedical Applications of Microprobe Analysis, 1999.
[3] Jordan A. Hachtel, The Nanoscale Optical Properties of Complex Nanostructures, 2018.
[4] Kimoto, K., Asaka, T., Saito, M., Matsui, Y., and Ishizuka, K., Element-selective imaging of atomic columns in a crystal using STEM and EELS, Nature, 450, 702-404, 2007.
[5] Maurice C. Fuerstenau, Graeme J. Jameson, Roe-Hoan Yoon, Froth Flotation: A Century of Innovation, 2007.

 

=================================================================================