Electron microscopy
 
Comparison of Data Acquisition Times of Various Techniques
- Practical Electron Microscopy and Database -
- An Online Book -
Microanalysis | EM Book                                                                                   https://www.globalsino.com/EM/        


=================================================================================

 

Table 1262. Comparison of data acquisition times of various techniques.

Technique
Sample Example of acquisition time for an image Notes (e.g. beam current, efficiency of collection optics, probe size, spatial resolution) and references
Acquisition time per pixel Step size 100 pixels x 100 pixels
Electron source: Field emission (most of current microscopes)
TEM/HRTEM 0.5-1 µs 5x10-3-1x10-2 s
HAADF-STEM 10 µs - 0.5 ms 0.1 - 5 s Sample spatial drift is usually not significant since the exposure time is very short
35 ms The Gd atoms were found to move within their fullerene cages of Gd-metallofullerene molecules so that an increase in acquisition time alone may not be suitable for improving the signal-to-noise ratio (SNR) for such unstable samples [18]
EFTEM Zero-loss 0.24 - 1.2 µs 0.005 - 0.01 s All pixels are recorded in parallel
Si plasmon 1.2 - 2.5 µs 0.01 - 0.02 s
Oxide plasmon 2.5 - 5 µs 0.02 - 0.04 s
TEM-EELS Plasmon 5 ms 1 nm/pixel 0.83 min
Si-L (99 eV) 0.05 s ~ 8 min Atomic EELS mapping [19]
C-K (284 eV) 2 μs ~ 0.02 s Fine-structures analysis [11]
5 ms Carbon mapping [12]
0.05 s Atomic EELS mapping [19]
Ag M4,5 (373 eV) 0.36 - 0.40 ms Ag nanoparticle; the acquisition time was deemed to be the maximum allowable before noticeable particle damage was observed [10]
Ti L2,3 (455 eV) 10 ms ~ 2 min Fine structure analysis at an atomic spatial resolution [8]
O-K (532 eV) 7 ms Oxygen mapping [12]
0.3 s Oxygen disorder in YSZ/SrTiO3 colossal ionic conductor heterostructures [16]
2 s Fine structure analysis in real time [16]
C (284 eV)
N (399 eV)
O (532 eV)
0.2 s ~ 0.55 h 100 kV, current: 1 nA [6]
Fe L2,3 (710 eV) 10 ms Iron mapping [12]
80 ms The acquisition time per pixel was chosen to avoid beam damage and provided the best possible signal-to-noise ratio [9]
0.1 - 0.4 s Iron mapping [13]
5 s 13 h Very noisy signal
Au M4,5 (2.206 keV) 50 ms - 0.5 s Au nanoparticle; the acquisition time was deemed to be the maximum allowable before noticeable particle damage was observed [10]
Fe M2,3 (56 eV)
Co M2,3 (60 eV)
0.5 s Fine structure analysis [17]
O K (540-590 eV)
Fe L2,3 (720-770 eV)
3 s [17]
La, Mn, Sr, Ti, O 2 ms Current: ~250 pA; atomic mapping LaMnO3/SrMnO3/SrTiO3; No drift compensation was used in mapping. [14]
Ti (L 455 eV)
Mn (L 641 eV)
La (M 832 eV)
7 ms
Ag M4,5 (373 eV)
Au M4,5 (2.206 keV)
0.1 s AuAg alloy nanoparticles [10]
Sr-M3 (269 eV)
Ti (455 eV)
O (532 eV)
L M (832 eV)
Al-K (1560 eV)
0.15 s Current: ~78 pA
La, Ti, Mn, O 0.2 s La0.7Sr0.3MnO3 (LSMO); Short mapping time was used to reduce spatial drift and beam damage [15]
2 - 10 ms 20 - 100 s Organic samples [7]
7 ms

Current: 780 pA, size: 0.14 nm (With Cs and C5 correction)

~0.1-1 s Current: 10-100 pA, ~10-30% efficiency (No Cs correction)
  0.1-0.2 s Current: 100-200 pA (With Cs correction)
  2 s Current: 7 pA, size: 0.12 nm [4]
SEM-EDS > 20 wt % 0.1-0.25 s 1 nm/pixel 0.28 hours
TEM-EDS < 10 wt % 0.6 s 1 nm/pixel 1.67 hours
> 20 wt % 0.1-0.2 s 1 nm/pixel 0.28-0.56 hour Spatial resolution: < 5 nm
Pt, Cu, Fe 0.1 s Current: 0.7 nA
Electron source: Thermionic sources
STEM   Spatial resolution: Poor
TEM-EDS > 20 wt % 1 s 1 nm/pixel 8.3 hours Spatial resolution: < 5 nm
> 20 wt % for light elements 4 s 33.2 hours [2]
Other techniques
WDS 10 ms



To identify from the presence or absence of an element [5]
0.1 s Good signal [5]
CL 20 s at 2 nA Low detection efficiency [3]
NSIMS at 2.5 pA 0.005 - 0.015 s 47-98 nm/pixel 0.01-0.04 hour [1]
* NSIMS: Nano secondary ion mass spectrometry.
   CL: Cathodoluminescence.
   The times above do not include drift corrections, which typically adds 5-50 minutes, depending on the specific system.

 

 

 

 

 

 

 

[1] A.T. Brasier, D. McIlroy, N. McLoughlin, Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier, 2017.
[2] Peter Ingram, John D. Shelburne, Victor L. Roggli and Ann LeFurgey, Biomedical Applications of Microprobe Analysis, 1999.
[3] Jordan A. Hachtel, The Nanoscale Optical Properties of Complex Nanostructures, 2018.
[4] Kimoto, K., Asaka, T., Saito, M., Matsui, Y., and Ishizuka, K., Element-selective imaging of atomic columns in a crystal using STEM and EELS, Nature, 450, 702-404, 2007.
[5] Maurice C. Fuerstenau, Graeme J. Jameson, Roe-Hoan Yoon, Froth Flotation: A Century of Innovation, 2007.
[6] M.A. Aronova and R.D. Leapman, Development of Electron Energy Loss Spectroscopy in the Biological Sciences, MRS Bull. 2012, 37(1): 53–62. doi:10.1557/mrs.2011.329.
[7] Etienne Monier, Marcel Tence, Marta de Frutos and Nicolas Dobigeon, Reconstruction of partially sampled multi-band images – Application to STEM-EELS imaging, 2018.
[8] Alexandre Gloter, Vincent Badjeck, Laura Bocher, Nathalie Brun, Katia March, Maya Marinova, Marcel Tencé, Michael Walls, Alberto Zobelli, Odile Stéphan, Christian Colliex, Atomically resolved mapping of EELS fine structures, Materials Science in Semiconductor Processing 65 (2017) 2–17.
[9] S. Turner, R. Egoavil, M. Batuk, A. A. Abakumov, J. Hadermann, J. Verbeeck, and G. Van Tendeloo, Site-specific mapping of transition metal oxygen coordination in complex oxides, Applied Physics Letters 101, 241910 (2012).
[10] James W L Eccles, An Electron Energy Loss Spectroscopy Study of Metallic Nanoparticles of Gold and Silver, PhD thesis, 2010.
[11] L. Lajaunie, C. Pardanaud, C. Martin, P. Puech, C. Hu, M. J. Biggs and R. Arenal, Advanced spectroscopic analyses on a: C-H materials: Revisiting the EELS characterization and its coupling with multi-wavelength Raman spectroscopy, 2017.
[12] C. Jeanguillaume, J. Berry, C. Colliex, P. Galle, M. Tence, P. Trebbia, Recent Results in EELS Elemental Mapping of Thin Biological Sections, Journal de Physique, Colloque C2, 2(45), pp. C2-577, 1984.
[13] R. D. Leapman, Blackwell Publishing Ltd. Detecting single atoms of calcium and iron in biological structures by electron energy-loss spectrum-imaging, Journal of Microscopy, Vol. 210, Pt 1 April 2003, pp. 5–15.
[14] Julia Mundy, David Muller, Carolina Adamo, Darrell Schlom, Cornell U., Nion UltraSTEM, Gatan Quantum EELS, 100 kV, Nature Materials 11 (2012) 55.
[15] Nico Homonnay, Kerry J. ÓShea, Christian Eisenschmidt, Martin Wahler, Donald A. MacLaren, and Georg Schmidt Interface Reactions in LSMO−Metal Hybrid Structures, ACS Appl. Mater. Interfaces 2015, 7, 22196−22202.
[16] T.J. Pennycook, M.P. Oxley, J. Garcia-Barriocanal, F.Y. Bruno, C. Leon, J. Santamaria, S.T. Pantelides, M. Varela, and S.J. Pennycook, Seeing oxygen disorder in YSZ/SrTiO3 colossal ionic conductor heterostructures using EELS, Eur. Phys. J. Appl. Phys. 54, 33507 (2011).
[17] Dipl.-Ing. Arno Meingast, Analytical TEM Investigations of Nanoscale Magnetic Materials, doctoral thesis, 2015.
[18] Angela Erin Goode, Correlation of electron and x-ray spectroscopies in nanoscale systems, PhD thesis, 2012.
[19] David C. Bell, Natasha Erdman, Low Voltage Electron Microscopy: Principles and Applications, 2013.

 

=================================================================================