Table 1262. Comparison of data acquisition times of various techniques.
Technique |
Sample |
Example of acquisition time for an image |
Notes (e.g. beam current, efficiency of collection optics, probe size, spatial resolution) and references |
Acquisition time per pixel |
Step size |
100 pixels x 100 pixels |
Electron source: Field emission (most of current microscopes) |
TEM/HRTEM |
|
|
0.5-1 µs |
|
5x10-3-1x10-2 s |
|
HAADF-STEM |
|
|
10 µs - 0.5 ms |
|
0.1 - 5 s |
Sample spatial drift is usually not significant since the exposure time is very short |
|
|
35 ms |
|
|
The Gd atoms were found to move within their fullerene cages of Gd-metallofullerene molecules
so that an increase in acquisition time alone may not be suitable for improving the signal-to-noise ratio (SNR) for such unstable samples [18] |
EFTEM |
Zero-loss |
|
0.24 - 1.2 µs |
|
0.005 - 0.01 s |
All pixels are recorded in parallel |
Si plasmon |
|
1.2 - 2.5 µs |
|
0.01 - 0.02 s |
Oxide plasmon |
|
2.5 - 5 µs |
|
0.02 - 0.04 s |
TEM-EELS |
Plasmon |
|
5 ms |
1 nm/pixel |
0.83 min |
|
Si-L (99 eV) |
|
0.05 s |
|
~ 8 min |
Atomic EELS mapping [19] |
C-K (284 eV) |
|
2 μs |
|
~ 0.02 s |
Fine-structures analysis [11] |
|
5 ms |
|
|
Carbon mapping [12] |
|
0.05 s |
|
|
Atomic EELS mapping [19] |
Ag M4,5 (373 eV) |
|
0.36 - 0.40 ms |
|
|
Ag nanoparticle; the acquisition time was deemed to be the maximum allowable before noticeable particle damage was observed [10] |
Ti L2,3 (455 eV) |
|
10 ms |
|
~ 2 min |
Fine structure analysis at an atomic spatial resolution [8] |
O-K (532 eV) |
|
7 ms |
|
|
Oxygen mapping [12] |
|
0.3 s |
|
|
Oxygen disorder in YSZ/SrTiO3 colossal ionic conductor heterostructures [16] |
|
2 s |
|
|
Fine structure analysis in real time [16] |
C (284 eV)
N (399 eV)
O (532 eV) |
|
0.2 s |
|
~ 0.55 h |
100 kV, current:
1 nA [6] |
Fe L2,3 (710 eV) |
|
10 ms |
|
|
Iron mapping [12] |
|
80 ms |
|
|
The acquisition time per pixel was chosen to avoid beam damage and provided the best possible signal-to-noise ratio [9] |
|
0.1 - 0.4 s |
|
|
Iron mapping [13] |
|
5 s |
|
13 h |
Very noisy signal |
Au M4,5 (2.206 keV) |
|
50 ms - 0.5 s |
|
|
Au nanoparticle; the acquisition time was deemed to be the maximum allowable before noticeable particle damage was observed [10] |
|
Fe M2,3 (56 eV)
Co M2,3 (60 eV) |
|
0.5 s |
|
|
Fine structure analysis [17] |
O K (540-590 eV)
Fe L2,3 (720-770 eV) |
|
3 s |
|
|
[17] |
La, Mn, Sr, Ti, O |
|
2 ms |
|
|
Current: ~250 pA; atomic mapping LaMnO3/SrMnO3/SrTiO3; No drift
compensation was used in mapping. [14] |
Ti (L 455 eV)
Mn (L 641 eV)
La (M 832 eV) |
|
7 ms |
|
|
|
Ag M4,5 (373 eV)
Au M4,5 (2.206 keV) |
|
0.1 s |
|
|
AuAg alloy nanoparticles [10] |
Sr-M3 (269 eV)
Ti (455 eV)
O (532 eV)
L M (832 eV)
Al-K (1560 eV) |
|
0.15 s |
|
|
Current: ~78 pA |
La, Ti, Mn, O |
|
0.2 s |
|
|
La0.7Sr0.3MnO3 (LSMO); Short mapping time was used to reduce spatial drift and beam damage [15] |
|
|
2 - 10 ms |
|
20 - 100 s |
Organic samples
[7] |
|
|
7 ms |
|
|
Current: 780 pA, size: 0.14 nm (With Cs and C5 correction) |
|
|
~0.1-1 s |
|
|
Current: 10-100 pA, ~10-30% efficiency (No Cs correction) |
|
|
0.1-0.2 s |
|
|
Current: 100-200 pA (With Cs correction) |
|
|
2 s |
|
|
Current: 7 pA, size: 0.12 nm [4] |
SEM-EDS |
|
> 20 wt % |
0.1-0.25 s |
1 nm/pixel |
0.28 hours |
|
TEM-EDS |
|
< 10 wt % |
0.6 s |
1 nm/pixel |
1.67 hours |
|
|
> 20 wt % |
0.1-0.2 s |
1 nm/pixel |
0.28-0.56 hour |
Spatial resolution: < 5 nm |
|
Pt, Cu, Fe |
0.1 s |
|
|
Current: 0.7 nA |
Electron source: Thermionic sources |
STEM |
|
|
|
|
|
Spatial resolution: Poor |
TEM-EDS |
|
> 20 wt % |
1 s |
1 nm/pixel |
8.3 hours |
Spatial resolution: < 5 nm |
|
> 20 wt % for light elements |
4 s |
|
33.2 hours |
[2] |
Other techniques |
WDS |
|
|
10 ms |
|
|
To identify from the presence or absence of an element [5] |
|
|
0.1 s |
|
|
Good signal [5] |
CL |
|
|
20 s at 2 nA |
|
|
Low detection efficiency [3] |
NSIMS at 2.5 pA |
|
|
0.005 - 0.015 s |
47-98 nm/pixel |
0.01-0.04 hour |
[1] |
* NSIMS: Nano secondary ion mass spectrometry.
CL: Cathodoluminescence.
The times above do not include drift corrections, which typically adds 5-50 minutes, depending on the specific system. |
[1] A.T. Brasier, D. McIlroy, N. McLoughlin, Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier, 2017.
[2]
Peter Ingram, John D. Shelburne, Victor L. Roggli and Ann LeFurgey, Biomedical Applications of Microprobe Analysis, 1999.
[3] Jordan A. Hachtel, The Nanoscale Optical Properties of Complex Nanostructures, 2018.
[4] Kimoto, K., Asaka, T., Saito, M., Matsui, Y., and Ishizuka, K., Element-selective imaging of atomic columns in a crystal using STEM and EELS, Nature, 450, 702-404, 2007.
[5] Maurice C. Fuerstenau, Graeme J. Jameson, Roe-Hoan Yoon, Froth Flotation: A Century of Innovation, 2007.
[6] M.A. Aronova and R.D. Leapman, Development of Electron Energy Loss Spectroscopy in the Biological Sciences, MRS Bull. 2012, 37(1): 53–62. doi:10.1557/mrs.2011.329.
[7] Etienne Monier, Marcel Tence, Marta de Frutos and Nicolas Dobigeon, Reconstruction of partially sampled multi-band images – Application to STEM-EELS imaging, 2018.
[8] Alexandre Gloter, Vincent Badjeck, Laura Bocher, Nathalie Brun, Katia March, Maya Marinova, Marcel Tencé, Michael Walls, Alberto Zobelli, Odile Stéphan, Christian Colliex, Atomically resolved mapping of EELS fine structures, Materials Science in Semiconductor Processing 65 (2017) 2–17.
[9] S. Turner, R. Egoavil, M. Batuk, A. A. Abakumov, J. Hadermann, J. Verbeeck,
and G. Van Tendeloo, Site-specific mapping of transition metal oxygen coordination in complex
oxides, Applied Physics Letters 101, 241910 (2012).
[10] James W L Eccles, An Electron Energy Loss Spectroscopy Study of Metallic Nanoparticles of Gold and Silver, PhD thesis, 2010.
[11] L. Lajaunie, C. Pardanaud, C. Martin, P. Puech, C. Hu, M. J. Biggs and R. Arenal, Advanced spectroscopic analyses on a: C-H materials: Revisiting the EELS characterization and its coupling with multi-wavelength Raman spectroscopy, 2017.
[12] C. Jeanguillaume, J. Berry, C. Colliex, P. Galle, M. Tence, P. Trebbia, Recent Results in EELS Elemental Mapping of Thin Biological Sections, Journal de Physique, Colloque C2, 2(45), pp. C2-577, 1984.
[13] R. D. Leapman, Blackwell Publishing Ltd. Detecting single atoms of calcium and iron in biological
structures by electron energy-loss spectrum-imaging, Journal of Microscopy, Vol. 210, Pt 1 April 2003, pp. 5–15.
[14] Julia Mundy, David Muller, Carolina Adamo, Darrell Schlom, Cornell U., Nion UltraSTEM, Gatan Quantum EELS, 100 kV, Nature Materials 11 (2012) 55.
[15] Nico Homonnay, Kerry J. ÓShea, Christian Eisenschmidt, Martin Wahler, Donald A. MacLaren, and Georg Schmidt Interface Reactions in LSMO−Metal Hybrid Structures, ACS Appl. Mater. Interfaces 2015, 7, 22196−22202.
[16] T.J. Pennycook, M.P. Oxley, J. Garcia-Barriocanal, F.Y. Bruno, C. Leon, J. Santamaria, S.T. Pantelides, M. Varela, and S.J. Pennycook, Seeing oxygen disorder in YSZ/SrTiO3 colossal ionic conductor heterostructures using EELS, Eur. Phys. J. Appl. Phys. 54, 33507 (2011).
[17] Dipl.-Ing. Arno Meingast, Analytical TEM Investigations of Nanoscale Magnetic Materials, doctoral thesis, 2015.
[18] Angela Erin Goode, Correlation of electron and x-ray spectroscopies in nanoscale systems, PhD thesis, 2012.
[19] David C. Bell, Natasha Erdman, Low Voltage Electron Microscopy: Principles and Applications, 2013.
|