Electron microscopy
 
Tables of Burgers Vectors of Defects in FCC Structures
& Determination of Burgers Vector of FCC Lattice Defects
- Practical Electron Microscopy and Database -
- An Online Book -
Microanalysis | EM Book                                                                                   https://www.globalsino.com/EM/        

This book (Practical Electron Microscopy and Database) is a reference for TEM and SEM students, operators, engineers, technicians, managers, and researchers.
=================================================================================

 

Table 1815a. Burgers vectors (b) of perfect and partial dislocations in fcc structure.

Type
Burgers vector
Note
Crystallographic notation Thompson's notation
Perfect 1/2<1 1 0> AB See Table 1815b
Partial 1/3<1 1 1> Frank partial
1/6<1 1 2>
Shockley partial
1/6<110> αβ Stair-rod partial
1/3<1 0 0> δα/CB Stair-rod partial
1/3<1 1 0> δD/Cγ Stair-rod partial
1/6<0 1 3> δγ/BD Stair-rod partial
1/6<1 2 3> δB/Dγ Stair-rod partial

Table 1815b. Standard analysis of g·b for relevant reflections in the fcc crystal structure for perfect dislocations.

Plane of dislocation (1-1 1) or (1-1-1) (1-1-1) or (11-1) (1-1 1) or (1 1-1) (1 1 1) or (1 1-1) (1 1 1) or (1-1 1) (111) or (-111)
g b (×1/2) [1 1 0] [1 0 1] [0 1 1] [1 -1 0] [1 0 -1] [0 -1 1]
1 -1 1 g·b 0 2 0 2 0 2
-1 1 1 0 0 2 -2 -2 0
1 -1 -1 0 0 -2 2 2 0
1 1 -1 2 0 0 0 2 -2
0 0 2 0 2 2 0 -2 2
0 -2 0 -2 0 -2 2 0 2
2 -2 0 0 2 -2 4 2 2
1 -1 3 0 4 2 2 -2 4

Table 1815c. Values of g·b for Frank partial dislocations in fcc structures. [1]

  Fault plane
(111) (11-1) (1-11) (-111)
b (×1/3) [111] [11-1] [1-11] [-111]
g 2 0 0 g·b 2 2 2 -2
0 -2 0 -2 -2 2 -2
2 -2 0 0 0 4 -4
2 2 0 4 4 0 0
1 1 1 3 1 1 1
1 -1 -1 -1 -1 1 -3
4 -2 -2 0 4 4 -8
3 1 1 5 1 3 -1

Table 1815d. Values of g·b for Stair-rod partial dislocations in fcc structures. [1]

  Fault plane
(1 1 1)
(1 -1 1)
(1 1 -1)
(-1 1 1)
b (×1/6) [1 -1 0] [0 1 -1] [1 0 -1] [-1 0 1] [1 1 0] [0 1 1] [1 0 1] [1 -1 0] [0 1 1] [1 1 0] [0 -1 1] [1 0 1]
g 2 0 0 g·b 2 0 2 -2 2 0 2 2 0 2 0 2
0 -2 0 2 -2 0 0 -2 -2 0 2 -2 -2 2 0
2 -2 0 4 -2 2 -2 0 -2 2 4 -2 0 2 2
2 2 0 0 -2 2 -2 4 2 2 0 2 4 -2 2
1 1 1 0 0 0 0 2 2 2 0 2 2 0 2
1 -1 -1 2 0 2 2 0 -2 0 2 -2 0 0 0
4 -2 -2 6 0 6 -6 2 -4 2 6 -4 2 0 2
3 1 1 2 0 2 2 4 2 4 2 2 4 0 4

Table 1815e. Values of g·b for Shockley partial dislocations in fcc structures. [1]

  Fault plane
(1 1 1)
(1 1 -1)
(1 -1 1)
(-1 1 1)
b (×1/6) [-1 -1 2] [2 -1 -1] [-1 2 -1] [2 -1 1] [-1-1-2] [-1 2 1] [-1-2-1] [-1 1 2] [2 1-1] [-2-1-1] [1 -1 2] [1 2-1]
g 2 0 0 g·b -2 4 -2 4 -2 -2 -2 -2 4 -4 2 2
0 -2 0 2 2 -4 2 2 -4 4 -2 -2 2 2 -4
2 -2 0 0 6 -6 6 0 -2 2 -4 2 -2 4 -2
2 2 0 -4 2 2 2 -4 2 -6 0 6 -6 0 6
1 1 1 0 0 0 2 -4 2 -4 2 2 -4 2 2
1 -1 -1 -2 4 -2 2 2 -4 2 -4 0 0 0 0
4 -2 -2 -6 12 -6 8 2 -10 2 -10 8 -4 2 2
3 1 1 -2 4 -2 6 -6 0 -6 0 6 -8 4 4

Similar to the determination of Burgers vectors of lattice dislocations as discussed in page3463, for an fcc structure, zone axes like [110] (see page3915) are especially useful because the accessible g vectors include (002), (1-11), (1-1-1), (2-20), (1-13) and their opposites, and the defects usually lie on {111} planes. As an example, if we found g1·b = 0 at g1 = [1 1 -1] and g2·b = 0 at g2 = [0 0 2], and then we can determine b = 1/2[1 -1 0] as indicated in the tables above.

 

 

=================================================================================
The book author (Yougui Liao) welcomes your comments, suggestions, and corrections, please click here for submission. If you let book author know once you have cited this book, the brief information of your publication will appear on the “Times Cited” page.