Surface and Bulk Plasmon Energy in EELS
- Practical Electron Microscopy and Database -
- An Online Book -

http://www.globalsino.com/EM/  



 

 

=================================================================================

The surface and bulk plasmon energies in EELS can be theoretically modeled or measured experimentally. In general, Table 4623a lists the trend of inelastic mean free paths (λ) under different experimental conditions.
Table 4623a. Trend of inelastic mean free paths (λ) under different experimental conditions.
  Accelerating voltage of the electron beam (V)
Collection semi-angle (β)
High
Low
Large
Small
Mean free path
Large
Small
Small
Large

Table 4623b lists bulk plasmon energies, full-width-at-half-maximum of bulk plasmon energies, bulk plasmon mean free path, and inelastic mean free path of some common elements and compounds, as well as their crystal structure (Notation: a for amorphous, b for body-centered cubic, c for cubic, f for face-centered cubic, h for hexagonal, l for liquid, o for orthorhombic, r for rhombohedral, t for tetragonal) [1 -  6].The bulk plasmon mean free path λp represents the collective valence electron component of inelastic scattering. The differences between λp and λi reflect single-electron excitation, for example, an inner-shell ionization edge occurring below 150 eV. In addition, Table 4623b also lists surface plasmon energies (Es) of some elements and components. Note that the accuracies are ~5%–10% for λ and ~10%–30% for λp. [16]

For specific experimental conditions or structures of materials, the plasmon energies are slightly affected by many factors:
         i) Plasmon energies slightly depend on the incident beam energy. In EELS measurement, the decrease of electron-beam energy gives rise to a low energy shift and a widened plasmon peak.
         ii) The energies of plasmon peaks can be lowered by defect excitations or interband transitions.
Table 4623b. Surface plasmon energies (Es), bulk plasmon energies (Ep in eV), full width at half-maximum EpEp), bulk plasmon mean free path (λp in nm), elastic mean free path (λe in nm), approximate bulk plasmon mean free path obtained by theoretical calculation (λapp in nm), and inelastic mean free path (λi in nm) at different incident kinetic energies (λi3, λi30, λi100, λi200, and λi300 at incident kinetic energies of 3 keV, 30 keV, 100 keV, 200 keV, and 300 keV, respectively). Note: for some elements, the table lists multiple values gathered from different references.
Materials
Es , eV
ΔEp, eV
Ep, eV
Origin
of Ep
λe, nm
λ for <100 keV, nm *
λi100, nm
λi200, nm
λi300, nm
λapp, nm
λp, nm**
Ag (f)
3.7
25
 
100
125
Ag (poly-c)
        71 (β = 10-100 mrad) [20]        
Ag2O
 
112
Al
10.3[7,8]
15.3[7,8]
 
λi30=55.5
107.5
134
155
160
Al (c)
    ~15     100 (β = 10-100 mrad) [17]        
Al (poly-c)
 
101 (β = 10-100 mrad) [18]
AlAs
16.1
 
146
Al2O3 (α)
10 - 20
22.2-26[9-12]
 
130-140
109
Al2O3 (poly-c)
 
106 (β = 10-100 mrad) [19]
As (r)
18.7
 
129
As (a)
16.7
 
142
Au
 
λi30=38
67
Au (poly-c)
        56 (β = 10-100 mrad) [20]        
Au (f)
~1
24.8
 
84
120
B(a)
18
22.7
 
123
110
126
Ba (b)
7.5
27.8
 
94
BaO
27.6
 
125
Be (c)
12–14   19.2     129 (β = 10-100 mrad) [17]        
Be(h)
4.8
18.7
 
160
129
169
Be3N2
    23                
Bi (r)
6.5
14.2
 
105
162
147
Bi2O3
 
125
BN (h)
9 & 26
 
BN (a)
24
 
106
BN (c)
        99 (β = 10-100 mrad) [21]        
B2O3
 
120
C
 
λi30=67
133
C (diamond)
13
33.2
 
88 (β = 10-100 mrad) [19]
112
81
116
DLC
    27              
C (graphite)
23~25
 
C (a)
20
24
 
λi40=34
74
116-160
24.5 eV
106
C (C60)
        115 (β = 10-100 mrad) [19]        
Ca (f)
2.1
8.8
 
241
CaO
 
130
Cd (h)
 
107
130
Ce2O3
 
125
 
Co (h)
20.9
 
98
118
108
CoO
24.6
 
115
Cr (b)
24.9
 
104
102
149
Cr (poly-c)
        74 (β = 10-100 mrad) [19]        
Cr2O3
 
118
Cs (b)
2.9
 
175
Cu
 
λi30=46.4
87
Cu (f)
19.3
 
100
126
100
Cu (poly-c)
        63 (β = 10-100 mrad) [18]        
Dy (h)
 
118
310
Dy2O3
 
126
Er (h)
14
 
Er2O3
 
115
Eu2O3
 
118
Fe (b)
23
 
102
109
121
Fe (poly-c)
        74 (β = 10 mrad); 57 (β = 100 mrad) [18, 20]        
Fe (306 stainless steel)
        78 (β = 10 mrad); 61 (β = 100 mrad) [17]        
Fe2O3
21.8
 
116
Ga
0.6
13.8
 
166
GaAs (c)
15.8
 
95 (β = 10 mrad); 74 (β = 100 mrad) [19]
148
GaN
19.4
 
GaP
16.5
 
143
GaSb
13.3
 
171
Ge
16.0
 
λi30=~ 20
Ge (c)
15.8
 
120-140
148
126
GeO2
 
130
Gd (h)
 
110
275
Gd2O3
14.6
 
125
158
Hf (h)
 
95
237
Hf (c)
        57 (β = 10 mrad); 41 (β = 100 mrad) [17]        
87 at 300 keV
~112
95 [20 mrad]
Hg (l)
1
6.4
 
HgO
 
116
H2O (c)
        220 (β = 10 mrad); 200 (β = 100 mrad) [19, 22]        
Ho2O3
 
120
I (o)
 
140
233
In (t)
12
11.4
 
110
129
InSb
    12.9              
Ir (b)
 
78
121
IrO2
29
 
110
La2O3
 
130
 
Li (b)
2.2
7.1-7.4
 
289
LiH
20.9
 
118
LiF
24.6
 
103
Li12Si7
    14.1                
Li7Si3
    13.6                
Li13Si4
    13.1                
Li22Si5
    12.9                
Mg (h)
0.7
10.3
 
150
211
214
MgB2
18.9
 
MgF2
24.6
 
103
MgO
22.3
 
93
133
152
112
Mn (c)
21.6
 
106
115
146
Mo (b)
25.2
 
98
163
MoO3
24.4
 
111
Na (b)
0.4
5.7
 
348
NaCl
15.5
 
151
Nb (b)
 
105
194
NbC
    24.0              
Nd2O3
14.2
 
120
162
Ni (f)
20.7
 
98
119
103
NiO
22.6
 
115
111
NiO (c)
        89 (β = 10 mrad); 71 (β = 100 mrad) [17]        
NiSi2
19.75 - 20.0
 
NiSi
20.25 - 20.7
 
Ni2Si
21.9
 
NiTi alloy
 
100
P (o)
 
160
160
Pb (f)
13
 
99
141
PbO
 
122
Pd (b)
6.5[13]
25.1&31.9[13]
 
94
118
PdO
3.7&7.6[13]
 
110
Pr2O3
 
122
Pt (b)
22.6
 
82
111
120
Rb (b)
0.6
3.41
 
539
Re (h)
28
 
78
141
Ru (b)
 
90
134
S (o)
 
200
200
Sb (r)
3.3
15.2
 
120
145
234
Sc (h)
14
 
604
Sc2O3
 
125
Se (h)
6.2
17.1
 
130
205
Se (a)
6.2
16.3
 
145
SeO2
3.95
 
130
Si
   
λi3< 5; λi30=~ 20; λi1.5=2.11; λi0.15=0.4
97
147
180
Si (c)
8.2
3.2
16.7
Si 2p  
111 (β = 10 mrad); 91 (β = 100 mrad) [20]
145
142
168
Si (a)
3.9
16.3
 
145
SiC (α)
3.9
21.5
 
Si3N4 (α)
10.1
23.7
N 1s  
SixNy (with excess Si)
    17 - 24 [25,26]                
Si3N4/wet SiO2 interface
    21-22 [23]                
Si3N4/native oxide interface
    19.6-20 [24]                
SiO2 (α)
16.6
22.4
O 1s  
λi1.5=2.96; λi0.15=0.7
119 (β = 10 mrad); 99 (β = 100 mrad) [19]
155
112
SiO2
660 at 300 keV
102
178
247 [10 mrad], 140 [20 mrad]
Sm (r)
 
112
280
Sm2O3
13.5
 
120
Sn (t)
10
1.3
13.7
 
λi0.1= 0.7, λi2= 1.0, λi4 = 1.4, λi6= 1.6 [14]
115
167
273
SnO
 
λi0.1 = 1.0, λi2 = 1.4, λi4 = 1.9, λi6 = 2.3 [14]
SnO2
 
λi1 = 1.0, λi2 = 1.4, λi4 = 1.9, λi6 = 2.3 [14]
115
Sr (b)
2.3
8
 
261
SrO
32
 
126
SrTiO3
 
115[15]
Ta (b)
 
88
183
TaC
    22.4              
Tb (h)
13.3
 
Tb2O3
 
125
Te (h)
6.2
17.1
 
130
216
Ti (h)
17.9
 
120
134
202
 
~140
   
TiO
 
120
Tl (h)
 
95
135
V (b)
21.8
 
109
114
158
Vacuum***
 
50 meters
VC
    22.2              
V2O5
 
116
W (b)
 
82
151
WO3
 
110
Y (h)
7
12.5
 
124
354
Yb (f)
 
110
275
Yb2O3
 
115
YH2
15.3
 
Y2O3
5.01
 
122
Zn (h)
17.2
 
106
138
106
ZnO
16                
Zr (h)
 
113
268
Zr (c)
        75 (β = 10 mrad); 57 (β = 100 mrad) [17]        
ZrO2
 
115
Epon
 
21.5 eV

* λi presents the inelastic mean free paths at uncommon accelerating voltages of the electron beam. The applied voltages are noted by x in λix (x is in unit of keV), e.g. λi0.1 is the mean free path of an incident electron at an accelerating voltage of 0.1 keV, namely 100 eV.
** λp gives an approximate value of the bulk plasmon mean free path (which is normally equal to an approximate inelastic mean free path).
*** Vacuum of 10-4 Torr (10100 air molecules/cm3).
**** β presents collection semi-angle.
***** c and poly-c represent single-crystal and polycrystalline films, respectively.

In the applications of material science and engineering, the incident electron beam in TEMs used for EELS analysis is normally accelerated to 200 keV. Therefore, the bulk plasmon mean free path (λi200) at such incident kinetic energies is generally in the range of ~80 and 200 nm. Figure 4623 shows a clear periodic dependence of λi200 such that within one row of the Periodic Table, the minimum (maximum) of λi200 is observed for the elements with completed (empty) outer d shell. The oxides present a smaller variation. For oxides, the atomic number Z corresponds to the main element, e.g., Z=14 for SiO2.

Periodic dependence of λi200 on atomic number Z

Figure 4623. Periodic dependence of λi200 on atomic number Z. [16]



[1] Daniels, J., Festenberg, C. V., Raether, H., and Zeppenfeld, K. (1970) Optical constants of solids by electron spectroscopy. In Springer Tracts in Modern Physics, ed. G. Hoehler, Springer, New York, NY, Vol. 54, pp. 78–135.
[2] Colliex, C., Cosslett, V. E., Leapman, R. D., and Trebbia, P. (1976) Contribution of electron energy-loss spectroscopy to the development of analytical electron microscopy. Ultramicroscopy 1, 301–315.
[3] Raether, H. (1980) Excitation of Plasmons and Interband Transitions by Electrons. Springer Tracts in Modern Physics, Springer, New York, NY, Vol. 88.
[4] Colliex, C. (1984) Electron energy-loss spectroscopy in the electron microscope. In Advances in Optical and Electron Microscopy, eds. V. E. Cosslett and R. Barer, Academic, London, Vol. 9, pp. 65–177.
[5] Ahn, C. C., ed. (2004) Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas, Wiley, New York, NY.
[6] Iakoubovskii, K., Mitsuishi, K., Nakayama, Y., and Furuya, K. (2008) Thickness measurements with electron energy loss spectroscopy. Microsc. Res. Tech. 71, 626–631.
[7] C.J. Powell, J.B. Swan, (1959) Phys. Rev. 115, 869.
[8] E.D. Johnson, R.P. Merrill, (1985) J. Vac. Sci. Technol. A3, 1313.
[9] C.J. Powell, J.B. Swan, (1960) Phys. Rev. 118, 640.
[10] E.D. Johnson, R.P. Merrill, (1985) J. Vac. Sci. Technol. A3, 1313.
[11] G. Gergely, M. Menyhard, A. Sulyok, (1986) Vacuum 36, 471.
[12] S.D. Berger, I.G. Salisbury, R.H. Milne, D. Imeson, C.J. Humphreys, (1978) Philos. Mag. B55, 341.
[13] Helena A.E. Hagelin, Jason F. Weaver, Gar B. Hoflund, Ghaleb N. Salaita, Electron energy loss spectroscopic investigation of palladium metal
and palladium(II) oxide, Journal of Electron Spectroscopy and Related Phenomena 124 (2002) 1–14.
[14] Gar B.Hoflund and Gregory R. Corallo, Electron-energy-loss study of the oxidation of polycrystalline tin, Phys. Rev. B 46, 7110–7120 (1992).
[15] R.E. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, Plenum Press, New York, 1996, p. 302.
[16] Konstantin Iakoubovskii, Kazutaka Mitsuishi,Yoshiko Nakayama, and Kazuo Furuya, Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: Atomic number dependent oscillatory behavior, Physical Review B 77, 104102 (2008).
[17] Malis, T., Cheng, S. C., and Egerton, R. F. (1988) EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Microsc. Tech. 8, 193–200.
[18] Crozier, P. A. (1990) Measurement of inelastic electron scattering cross-sections by electron energy-loss spectroscopy. Philos. Mag. 61, 311–336.
[19] Egerton, R. F. (1992) A data base for energy-loss cross sections and mean free paths. In 50th Ann. Proc. Electron Microsc. Soc. Am., San Francisco Press, San Francisco, CA, pp. 1264–1265.
[20] Egerton, R. F., and Cheng, S. C. (1987) Measurements of local thickness by electron energy-loss spectroscopy. Ultramicroscopy 21, 231–244.
[21] Egerton, R. F. (1981) The range of validity of EELS microanalysis formulae. Ultramicroscopy 6, 297–300.
[22] Sun, S., Shi, S., and Leapman, R. (1993) Water distributions of hydrated biological specimens by valence electron energy loss spectroscopy. Ultramicroscopy 50, 127–139.
[23] V. A. Gritsenko, S. N. Svitasheva, I. P. Petrenko, Hei Wong, J. B. Xu, and I. H. Wilson, Study of Excess Silicon at Si3N4/Thermal SiO2 Interface Using EELS and Ellipsometric Measurements, Journal of The Electrochemical Society, 146 (2) 780-785 (1999), S0013-4651(98)06-067-4.
[24] V. G. Lifshiz, V. G. Kotlar, and A. A. Saranin, Surface (Soy.), 12, 76 (1984).
[25] M. M. Guraya, H. Ascolani, G. Zampiery, J. I. Cisneros, J. H. Diasda Silva, and M. P. Cantao, Phys. Ref. B, 49, 5677 (1990).
[26] R. Karcher, L. Ley, and R. L. Johnson, Phys. Rev. B, 30, 1896 (1984). 
 
 
 
 
 
 
 
 
 






 

 

 

=================================================================================